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In this lecture we give a survey of work over the last decades on stability and smoothing estimates in
maximum-norm of spatially semidiscrete finite element approximations of a model parabolic equation,
and related such estimates for the resolvent of the corresponding discrete elliptic operator. We end with
a short discussion of stability of fully discrete time stepping methods. For simplicity of presentation we
restrict ourselves here to piecewise linear finite elements in two space dimensions, even though several of
the results described are valid in greater generality. Several of the results are obtained in collaboration
with Michel Crouzeix, to whom this lecture is dedicated.

Consider the initial-value problem

ut − ∆u = 0 in Ω and u = 0 on ∂Ω, for t > 0, with u(·, 0) = v in Ω. (1)

where Ω is a domain in R
2, and denote by E(t) the solution operator for this problem defined by

u(t) = E(t)v. It is a special case of a result of Stewart [9] that if ∂Ω is smooth, then E(t) is an analytic
semigroup on C0(Ω̄) = {v ∈ C(Ω̄) : v = 0 on ∂Ω}, generated by ∆. This follows from the resolvent
estimate

‖(λI + ∆)−1v‖C ≤
C

1+|λ|
‖v‖C , for λ /∈ Σδ = {λ : | argλ| ≤ δ},

where ‖v‖C = supx∈Ω |v(x)| and where δ ∈ (0, 1
2π) is arbitrary. In addition to the stability estimate

‖E(t)v‖C ≤ ‖v‖C, which follows by the maximum-principle, this entails the smoothing estimate

‖E′(t)v‖C ≤
C

t
‖v‖C, for v ∈ C0(Ω̄).

Such a result is valid also under lesser regularity requirements on ∂Ω.

We shall discuss spatially semidiscrete and fully discrete approximation of (1) based on continuous,
piecewise linear finite elements, defined on a family of regular triangulations Th = {τ} of Ω̄ into closed
triangles τ . We set h = maxτ∈Th

diam (τ), and assume that the interior Ωh of ∪{τ : τ ∈ Th} ⊆ Ω is a
subset of Ω. We associate with Th the finite dimensional space

Sh = {χ ∈ C(Ω̄) : χ|τ linear for τ ∈ Th, χ = 0 on ∂Ω ∪ (Ω \ Ωh)}.

The semidiscrete finite element problem associated with (1) is then to find uh(t) ∈ Sh for t > 0 such that

(uh,t, χ) + (∇uh,∇χ) = 0 for χ ∈ Sh, t > 0, with uh(·, 0) = vh, where (v, w) =

∫
Ω

v w dx. (2)

With ∆h : Sh → Sh defined by −(∆hψ, χ) = (∇ψ,∇χ), ∀ψ, χ ∈ Sh, this may also be written as

uh,t − ∆huh = 0, for t > 0, with uh(0) = vh.

The solution operator of this problem, defined by uh(t) = Eh(t)vh, is the semigroup Eh(t) = e∆ht in Sh
generated by ∆h. The issue is then to show that this semigroup is analytic in Sh, equipped with the
maximum-norm, and this may be expressed either as a resolvent estimate for −∆h or as the stability
and a smoothing property of Eh(t). We remark that a maximum-principle does not hold for (2) and that
Eh(t) is not a contraction, see [10].

In Schatz, Thomée and Wahlbin [7] it was thus shown, by weighted norm energy arguments, that in the
case of a convex domain Ω with smooth boundary, and for quasiuniform triangulations,

‖Eh(t)vh‖C + t‖E′
h(t)vh‖C ≤ Cℓh‖vh‖C , for vh ∈ Sh, where ℓh = max(1, log(1/h)). (3)

By semigroup theory this shows the resolvent estimate

‖(λI + ∆h)
−1vh‖C ≤

Cℓ2h
1+|λ|

‖vh‖C , for λ /∈ Σδh
, where δh = 1

2π − cℓ−2
h . (4)
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In Schatz, Thomée, and Wahlbin [8] the logarithmic factor in (3) was removed, which implies that
the resolvent estimate (4) holds without a logarithmic factor, and for λ 6∈ Σδ, for some δ ∈ (0, 1

2π),
independent of h. In Bakaev, Thomée and Wahlbin [1] a direct proof was given that, for ∂Ω smooth, this
resolvent estimate holds for any angle δ ∈ (0, 1

2π). In Chatzipantelidis, Lazarov, Thomée, and Wahlbin
[6] such a resolvent estimate, with a logarithmic factor, was shown when Ω is a plane polygonal domain,
which may be nonconvex.

In all these results quoted the family of triangulations was required to be quasiuniform, which is a
somewhat undesirable restriction. A first attempt to weaken this requirement was made in Crouzeix and
Thomée [5] where a resolvent estimate of the desired type, with a logarithmic factor, was shown for a
modified discrete Laplacian, defined by

−(∆hψ, χ)h = (∇ψ,∇χ), ∀ψ, χ ∈ Sh,

where (·, ·)h denotes a simple quadrature approximation of the L2−inner product, and for triangulations
of Delaunay type, not required to be quasiuniform. This choice corresponds to the so-called lumped mass
modification of the semidiscrete problem (2) defined by

(uh,t, χ)h + (∇uh,∇χ) = 0 for χ ∈ Sh, t > 0, with uh(·, 0) = vh in Ω.

For this problem a maximum principle holds, and the solution operator Ēh(t) = e∆̄hh is a contraction
with respect to the maximum-norm.

We return to the standard semidiscrete problem (2). Given τ0 ∈ Th, we let Qj(τ0) denote the set of
triangles which are “j triangles away from τ0”, and by nj(τ0) the number of triangles in Qj(τ0). We now
make the assumption that the family {Th} of triangulations satisfies, with some α ≥ 1 and β ≥ 1,

hτ/hτ0 ≤ Cαj and nj(τ) ≤ Cβj , for τ ∈ Qj(τ0), j ≥ 1, for all τ0 ∈ Th. (5)

For quasiuniform triangulations this holds with α = 1 and β any number > 1, and if α > 1 we may
choose β = α4. Under these assumptions it was shown in Bakaev, Crouzeix and Thomée [2] that if (5)
holds and if α2βγ < 1, with γ = .318, then, for any fixed δ ∈ (0, 1

2π), we have, with hmin = minτ∈Th
hτ ,

‖(λI + ∆h)
−1χ‖C ≤

Cℓ
1/2
h

1 + |λ|
, ∀χ ∈ Sh, λ /∈ Σδ. where ℓh = max(1, log(1/hmin)), (6)

With β = α4, the condition requires α < γ−1/6 = (.318)−1/6 ≈ 1.21, which permits a substantial degree
of nonquasiuniformity. The proof of this result depends on an exponential decay property of the L2-
projection Ph, which states that if supp v ⊂ τ0, then ‖Phv‖L2(τ) ≤ Cγj‖v‖L2

for τ ∈ Qj(τ0), see Crouzeix
and Thomée [4]. It follows from (6) that, under our present assumptions on Th, the solution operator

Eh(t) of (2) satisfies the stability and smoothing estimate (3), with ℓh replaced by ℓ
1/2
h .

We now turn to fully discrete schemes for (1) which we obtain by time stepping in the spatially semidiscrete
equation (2). It is convenient to treat the time stepping in a Banach space framework, and we consider
thus an initial value problem of the form

u′ + Au = 0, for t > 0, with u(0) = v, (7)

in a complex Banach space B with norm ‖ · ‖. We assume that A is a closed, densely defined linear
operator, such that its resolvent satisfies, for some δ ∈ (0, 1

2π),

‖(λI −A)−1‖ ≤M |λ|−1, for λ 6∈ Σδ, with M ≥ 1.

We recall that −A is then the infinitesimal generator of an analytic semigroup

E(t) = e−tA =
1

2πi

∫
Γ

e−λt(λI −A)−1 dλ, for t ≥ 0,

which is the solution operator of (7), and where, e.g., Γ = {λ; | argλ| = ψ ∈ (δ, 1
2π)}.

We shall now discuss discretization in time of (7). Letting k denote the time step and tn = nk, and letting
r(λ) be a rational function which is bounded on Σψ, we define the approximation Unk of u(tn) = E(tn)v
by the recursion formula

Un+1
k = EkU

n
k , for n ≥ 0, where Ek = r(kA), with U0

k = v.
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We may thus write Unk = Enk v. It was shown in Crouzeix, Larsson, Piskarev and Thomée [3] that if r(λ)
is A(θ)−stable, with θ ∈ (δ, 1

2π], then

‖Unk ‖ = ‖Enk v‖ ≤ CM‖v‖.

The proof uses that, for any rational function r(λ), bounded in Σψ , we have, with suitable Γ,

r(A) = r(∞)I +
1

2πi

∫
Γ

r(λ)(λI −A)−1 dλ.

As an example, for the Crank-Nicolson method, corresponding to the A-stable rational function r(λ) =
(1 + 1

2λ)
−1(1 − 1

2λ), we obtain, under the assumption that (6) holds, that for the fully discrete solution

Unkh = Enkhvh, with Ekh = r(−k∆h), we have ‖Unkh‖C ≤ Cℓ
1/2
h ‖vh‖C .
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