

Modélisation électromagnétique des interactions ondes personnes

Man-Faï Wong, Joe Wiart France Télécom Recherche & Développement manfai.wong@francetelecom.com

- Tremendous development of mobile communications
- Public concerns about health impact
- Authorities have established guidelines and recommendations
 - Guidelines exist (ICNIRP, IEEE)
 - In 1999 EU council has output recommendations
 - State of the art dosimetry basis for the standards
- No evidence of health effects below the limits
- Worldwide Research goes on
 - High quality dosimetry needed

Outline

- → The objectives of Dosimetry
- → Methodology
- → Samples of dosimetry applied to
 - Mobile phones
 - Base station antennas
- → Challenges of future radio systems

The objectives of Dosimetry

Estimate the fields or the absorbed power to analyse the compliance to standards

Know the field
 levels in the tissues
 to allow biologists
 to conclude

Estimate the field levels induced by a mobile phone and a base station in operational mode

Research & Development

SAR < 2 Watts/kg?

March 2006

Methodology

- → E field, H field, Power density, SAR
- → Distribution, Absolute Value

Physical Quantities

- Simulation tools : what if scenarios, extrapolation, cost effective
- Measurement tools : real, asked for by the public
- Complementary
 Methods

- → Frequency, Modulation, time
 - varying characteristics
- ➔ Near field/Far field
- Huygens principle

Characterisation of the sources

Mobile numerical dosimetry

→ FDTD (Finite Difference Time Domain, Yee 1966), method of choice

→ MRI	→ E field	-	→ SAR
segmentation for			averaged
head tissue		σF^2	over 10g of
modelling		$SAR = \frac{OL^2}{2}$	tissue
Phone modelling		2ρ	

Dosimetry and Children exposure

Research & Development

SAR in children head

The questions Is child exposure comparable to adult exposure? Is SAM conservative for children?

To answer we need children head models to compare to adult and SAM

- heads derived from adult?
- heads coming from MRI?

Child Head model based on adult

Morphing based on external shape is possible

Nevertheless organs have specific growth and analysis using morphing approach has to be handled carefully.

Phone positioning and ear shape influence

The positioning of the phone induces uncertainties

The ear shape induces uncertainties

Ear	Length of	Width of the	Depth of the	
	the auricle	auricle	ear	
12 y. old	59 m m	33 m m	10 m m	
Child head				
12 years age	$59,6 \pm 3,6$	$35,3 \pm 2,3$	6 ± 4	
class	(mm)	(mm)	(mm)	
THEFT IS THE AND				

TABLE I: EAR DIMENSIONS OF CHILD HEAD OF 12 YEARS OLD

Ear	Length	Width auricle	Depth ear
dimensions	auricle (mm)	(mm)	(mm)
Case 1	56	33	2
Case 2	58	35	4
Case 3	60	37	6
Case 4	63	38	8
Case 5	59	33	10

restricted

Handset model

Research & Development

Child like versus SAM

Normalized Max SAR over 10 g at 1900 MHz Normalized Max SAR over 10 g at 835 MHz FD 1,2 1,2 1 1 0,8 0.8 IEEE 0,6 0,6 0,4 0,4 × 0,2 0,2 0 0 HEIGHT 102 mm 100 mm Child cheek Sam cheek Sam Tilt Child tilt Sam Tilt Sam cheek Child cheek Child tilt

Study carried out with the international intercomparison

SAM can be considered as conservative

The IEEE Child like head is coming from Japan (Nagoya Institute of Technology)

← 40 mm --← 42 mm --

WIDTH

, m

DEPTH

March 2006

Children Head models based on MRI

December 2004 model developped

- 4 years old
- 5 years old
- 9 years old
- 12 years old

adulte

12 ans

4 ans

CL 12 ans

CL 4 ans

Modèle	Tête	CL	Child	CL 4	Child
tête	Adulte	12	12	ans	4 ans
Freq.		ans	ans		
(MHz)					
900	58 %	59 %	53 %	55 %	58 %
1800	32 %	34 %	32 %	28 %	36 %
2100	42 %	45 %	40 %	42 %	46 %
835	55 %	51 %	60 %	53 %	60 %
1900	35 %	37 %	44 %	30 %	50 %

Comparisons

Research & Development

Whole body exposure of workers

Hybrid MoM/FDTD

➔ Two steps

Source modeling with MoM or other technique or measurement
FDTD calculation of SAR with incident field on Huygens box

One-way coupling

Exposure to UMTS antenna

- 3.6 mm x 3.6 mm x 3.6 mm
- 78 kg
- 31 tissues

UMTS (2140 MHz)

- FEKO
- •7 cm dipoles (4)
- Quarter wavelength from reflector

Antenna modeling comparison

Research & Development

March 2006

Electric field strength distribution comparison

Antenna in free space

Antenna with the body

Research & Development

SAR distribution comparison

0.4

0.35

0.3

0.25

-0.2

0.15

0.1

0.05

0

Research & Development

March 2006

Comparisons FDTD vs FEKO+FDTD

Dosimetry and new usage

Dosimetry and body worn

Body Worn: Is the "head" liquid applicable to body worn

Research & Development

Multilayer model : plane waves

 Layers thickness and occurrence coming from VH Multi-layers approach Comparison to homogeneous structure

Research & Development

Plane waves results

Multlayer model: dipole

ML#	Thickness Skin (mm)	Thickness Hypoderm (mm)	Thickness Muscle (mm)	Number of structure	%
1	3	17	\ge	30335	17.16
2	2	18	\succ	28972	16.39
3	2	9	10	5735	3.24
4	2	8	11	4662	2.64
5	2	10	9	4472	2.53
6	2	13	6	4440	2.51
7	2	12	7	4357	2.47
8	2	14	5	4282	2.42
9	1	20	\geq	4236	2.40
10	3	14	4	4001	2.26
Number	Total structure	for the 45 ML#		176749	

Dipole results (1/3)

Research & Development

Dipole results (2/3)

1.1

Comparison Equivalent Liquid heterogenous multilayers at 1800MHz at 50mm

Dipole results (3/3)

Dosimetry and base station antennas

Human exposure from Base station

- Public concerns on fields emitted by BSA close to living areas
- Expert groups recommend information

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

 10000

Public Compliance Boundary

Field levels

Specific antenna model is needed

Near field is able to be described using full wave analysis

- These approaches (MoM, FDTD, FEM...)
 - Are accurate
 - Quite heavy compared to the objective
 - Should be waste of time if the environment is not perfectly known

Far field gain is easy to use but inaccurate in the near field

New and specific approach is needed in the vicinity of the base station

Specificity of radio base station

Synthesis problem

- Given the antenna characteristics (sub-antennas are known), find the power distribution
- → Genetic Algorithm can be used

The cost function based on the maxima of the far field gain

Real antenna model K739636

E field 5m in front of the antenna on a vertical line

Compliance distance vs Input Power

Perfectly matched model

- Synthesis problem : "Given the antenna characteristics, find the sub-antennas (sub-antenna gain patterns and the power distribution)"
- Spherical harmonics decomposition of the sub-antennas and of the whole antenna

Spherical waves expansion

K 739662

March 2006

Reduced model Base station antenna

4 cells160 modes / cell2 λ spaced

Challenges in Electromagnetic Modelling

Fine details of the field (distribution and absolute levels)
 from the source (close to tissues)
 in the tissues

Staircasing of FDTD issue, modelling of the source

Need of fine tissue modelling
 Segmentation <1mm

Subgridding

Head models for children

 \rightarrow

Hybridization of techniques

• Coupling to other physics (thermal, cellular, ...)

Advanced numerical algorithms

