## **Upon this ROCK I will build my ...**

## standing on the shoulders of great people ...



## Runge

## standing on the shoulders of great people ...









## standing on the shoulders of great people ...













## standing on the shoulders of great people ...



## standing on the shoulders of great people ...



Yuan Chzao Din, Saul'ev, Guillou-Lago, Verwer-Sommeijer ...

#### ...Lebedev, Medovikov



#### ...Lebedev, Medovikov



#### ... and Assyr Abdulle



### **Stiff Equations**

... Around 1960, things became completely different and everyone became aware that the world was full of stiff problems. (G. Dahlquist in 1985)

Stiff Problem = search for a quiet life inside a turbulent world ...

**Example:** 
$$y' = -\lambda(y - \cos x)$$







## **Another Example.** The heat equation $\frac{\partial \theta}{\partial t} = \frac{\partial^2 \theta}{\partial x^2}$



**Stability Analysis:** 

$$y' = \lambda y \qquad \Rightarrow \qquad y_{n+1} = R(z)y_n \quad z = h\lambda;$$

Examples:



#### More general methods (Kuntzmann, Butcher 1964, Ehle 1968)



#### **Theories**



#### **B-Stability**



#### RADAU (General purpose code for stiff problems, E. Hairer):



Radau3

Radau5

#### Their order stars:



#### Variable order RADAU code:



#### **Robertson reaction:**



#### **The Price to Pay: Fully Implicit Method..**

# The Price to Pay: Fully Implicit Method..

#### **Explicit Methods ..?**

The Controversy between Multistep and Runge-Kutta

But surely the predictor-corrector techniques (Milne's for example) will result in one getting an answer to the same accuracy in a shorter time simply because information outside a single interval is used...

(Dr. J.M. Bennett, Sydney, in a discussion 1956)

The greater accuracy and the error-estimating ability of predictor-corrector methods make them desirable for systems of any complexity. ... Runge-Kutta methods still find applications in starting the computation ...

(A. Ralston, Math. Comput. 1962)

#### **Circle Theorems** (Jeltsch, Nevanlinna)

#### Jeltsch-Nevanlinna Theorem.



$$|\zeta_{\text{adams}}(\mu)| > |R_{\text{rk}}(\mu)|$$

$$\Rightarrow S_1^{scal} \not\supset S_2^{scal}$$
  
and  $S_1^{scal} \not\subset S_2^{scal}$ 

there is no overall good explicit method !

### Is there really no hope ...?

Yes, if, e.g., we know that eigenvalues are real. Problem. Find  $R(z) = 1 + z + a_2 z^2 + \ldots + a_s z^s$  as stable as long as possible for  $z \to -\infty$ . Yes, if, e.g., we know that eigenvalues are real. Problem. Find  $R(z) = 1 + z + a_2 z^2 + \ldots + a_s z^s$  as stable as long as possible for  $z \to -\infty$ .

Answer.  $R(z) = T_s(1 + z/s^2)$  (Chebyshev polynomial)



Yes, if, e.g., we know that eigenvalues are real. Problem. Find  $R(z) = 1 + z + a_2 z^2 + \ldots + a_s z^s$  as stable as long as possible for  $z \to -\infty$ .

Answer.  $R(z) = T_s(1 + z/s^2)$  (Chebyshev polynomial)



Illustration from Guillou-Lago (1961):



#### **Realization for nonlinear problems:**

Guillou-Lago, Saul'ev, Lebedev:

$$R_s(z) = \prod_{i=1}^s (1 + \delta_i z) \implies \text{composition of Euler steps.}$$

Van der Houwen-Sommeijer: Three term recursion for  $T_n \Rightarrow$ 



composition of 2-step formulas.

#### **Methods of Order 2:**

$$R_s(z) = 1 + z + \frac{z^2}{2} + a_3 z^3 + \ldots + a_s z^s$$

**Lebedev:** Zolotarev polynomials:





#### Van der Houwen-Sommeijer-Verwer:

Shift and scaling of  $T_n$  to produce 2nd order:



 $\Rightarrow$  some loss of stability, but three term recursion preserved.

#### **Higher Orders.**

$$R_s^p(z) = 1 + z + \dots + \frac{z^p}{p!} + a_{p+1}z^{p+1} + \dots + a_s z^s$$

#### **Problem (Lebedev 1995)** Theorem (Abdulle 2000)

 $R_s^p(z)$  possesses exactly p complex zeros if p is even and exactly p - 1 complex zeros if p is odd. Remaining real zeros distinct  $\in (-l_s^p, 0)$ .

Error constants: for p given  $C_{p+1}^p > C_{p+2}^p > \ldots > 0.$ 





#### **Proof by Order-Stars.**









#### Towards ROCK: (Abdulle-Medovikov 1999, Abdulle 2002):



Thm. Bernstein (1930):  $\Rightarrow R_s(z)$  'nearly' optimal; orthogonality:  $\Rightarrow$  3-term recursion.



#### **Realization for nonlinear problems:**



blue method given (from 3-term recursion), compose with red classical 4-stage RK method and achieve order 4 with the help of the **Butcher Group** 

 $\Rightarrow$  code **ROCK4**.

**Example. Reaction-Diffusion** (Brusselator with 1D diffusion).





#### **Comparison of Stability Domains**



#### **Other Applications.** (advection-diffusion-reaction)

Nanoscale Tunneling Devices, Stiff biogeochemical models, Aggregation processes of molecules, Quantum problem, Competition between Protein Folding and Aggregation, Soft Tissue Simulation, Simulation of the Saint-Venant System, Modelisation of High Current Arc, etc. **Other Applications.** (advection-diffusion-reaction)

Nanoscale Tunneling Devices, Stiff biogeochemical models, Aggregation processes of molecules, Quantum problem, Competition between Protein Folding and Aggregation, Soft Tissue Simulation, Simulation of the Saint-Venant System, Modelisation of High Current Arc, etc.

**More detailed Application.** (Transport in microarray) **DNA separation in heterogeneous media** (Duke and Austin, Ertas 1998-2003)



#### Multiscale transport modeling (Abdulle-Attinger).



Charged particles advected by electrical potential

$$v^{\varepsilon} = -\rho a^{\varepsilon} \nabla u , \quad a^{\varepsilon} = a(x/\varepsilon)$$

Elliptic Equ.  $\nabla \cdot (a^{\varepsilon} \nabla u^{\varepsilon}) = 0, \ u_{|\partial\Omega} = u_0$ Adv.-Diff.  $\frac{\partial c^{\varepsilon}}{\partial t} + v^{\varepsilon} \cdot \nabla c^{\varepsilon} = D \Delta c^{\varepsilon}$ , with I. & B. cond.

#### **Multiscale:**

Obstacles  $\sim$  micrometer  $\ll$  Device  $\sim$  centimeter

#### **Computational Simulation:**

# use finite element multiscale method (FE-HMM, Abdulle, E ...) for the multiscale elliptic problem ...

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1





#### FE-HMM DOF $\sim 10^3$

FEM DOF  $\sim 10^6$ 

#### ... and ROCK for the transport problem:



#### Particles trajectory in microdevice (ref. velocity)



#### **Cordiales félicitations et nos meilleurs voeux !!**



### What is ROCK doing with you?





## Good Bye !! Au revoir !! Do svidaniia !! Tot ziens !! Uff wiederluege !! Auf Wiedersehen !!