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Introduction

Improving the selectivity of trawling

= By numerical simulations of the the cod-end net

Main advantage : low cost of numerical simulations vs
experimental measurements (at sea or in a tank),

But needs of numerical models :

@ A net model : discrete models. High number of meshes
= Globalization techniques

@ A model for the fishes : catch model or balls model

o A fluid model
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experimental measurements (at sea or in a tank),

Introduction

But needs of numerical models :
@ A net model : discrete models. High number of meshes
= Globalization techniques
@ A model for the fishes : catch model or balls model

@ A fluid model = but complex geometry of the net ...

How could the net be taken into account in the fluid model ?

Question J
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Existing fluid models

@ Hypothesis of a uniform flow : Landweber’'s hypothesis

@ Model of an axisymmetric porous membrane : B. Vincent
(ECN PhD, 1996)

@ Ring model : D. Marichal (2005)
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@ Hypothesis of a uniform flow : Landweber’'s hypothesis

modelling
S @ Model of an axisymmetric porous membrane : B. Vincent
G.P (ECN PhD, 1996)
Introduction (*] Rlng model : D. Marichal (2005)

Our contribution
@ A 3D turbulent fluid model and its mathematical analysis
@ Development of an axisymmetric code with the free
software Freefem+-+
@ Participation in an experimental campaign to collect
hydrodynamical data

@ Test and validation of the code by comparison with the
experimental results
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Finding a model that could :
@ Control the passage of the fluid through the net
m;llent fluid @ Be applied in the 3D case (i.e. without the hypothesis of

axisymmetric flow)

@ Be applied to the case of a moving net
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The model built at Boulogne-sur-Mer by G.
Germain and J.V. Facq

Parameters of the net :
o Side mesh : 30mm
@ Number of meshes on the perimeter : 36
o Length per weight : 1200m /kg

@ Twine diameter : 1,5mm
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Three features and their advantages

@ A porous membrane model for the net = No more

complex geometry of twines and nodes
A Iy B
Qu

G. 5
T J -Gy
S
i Gu

=
<

o T C

@ A penalization method to take the net and fishes into
account : Navier-Stokes/Brinkman model with eddy
viscosity = Possibility of 3D computations by the means
of a Fictitious Domain Method : no complex mesh

@ A closure equation for the TKE. This a kind of Reynolds
Averaged Navier-Stokes model = To close the system
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GP @ Averaged incompressible Navier-Stokes/Brinkman
equations with eddy viscosity
M VU= V-on(u, Pk) + 2 u=0
—_— —_— . O‘ pr—
8t t\% K(X) ’
V-u=0,
Avel:aged
’S\IS;IQ:;}Brinkman
equations Where :
o(u, P, k) = —Pld+ (vo+v)(Vu + (Vu)b),
P = p+ %k, modified pressure

0 = kinematic viscosity of water.
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madeiting @ Unknowns : (u— P) (mean velocity - modified pressure), k
Lround a turbulent kinetic energy (TKE)
GP @ Averaged incompressible Navier-Stokes/Brinkman
equations with eddy viscosity
00 | uV)u — V-ou{u, Py k) + 22 u=0
it V.o _
ot s K(x) ’
V-u=0,
Avel:aged
’S\IS;IQ:;}Brinkman
equations Where :
ot(u,P,k) = —Pld+ (vo+ v)(Vu + (Vu)b),
Vt = G (x) k2, eddy viscosity coefficient

£(x) = mixing length.
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Averaged incompressible Navier-Stokes/Brinkman

equations

@ Unknowns : (u— P) (mean velocity - modified pressure), k
turbulent kinetic energy (TKE)

@ Averaged incompressible Navier-Stokes/Brinkman
equations with eddy viscosity

Ou 1Z0)
9 (uV)u — V-o(u, P, k) + K(X)u—O,
V.-u=0,

Where : K(x) is the permeability parameter.

K(x) _1 — 400 six € Qy,

€
K(x)=¢ — 0 si x € Gr U G,
K(x) = Kr si x € Gp,
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Averaged incompressible Navier-Stokes/Brinkman
equations

@ Unknowns : (u— P) (mean velocity - modified pressure), k
turbulent kinetic energy (TKE)

@ Averaged incompressible Navier-Stokes/Brinkman
equations with eddy viscosity

Ou 1Z0)
9 (uV)u — V-o(u, P, k) + K(X)u—O,
V.-u=0,

Fictitious domain method : the fluid equations hold in
the entire domain (C. S. Peskin (1972), Angot et al.
(1999), Khadra et al. (2000), Carbou and Fabrie (2003))
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Coupled system
of equations

System

@ Averaged incompressible Navier-Stokes/Brinkman
equations with eddy viscosity

\

Ou U
TS + (uV)u — V-o(u, P, k) + K((;()UZO’
V-u=0,

ov(u, P, k) = —Pld + (vo + v¢)(Vu + (Vu)h)
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Lround a equations with eddy viscosity
- Ou + (uV)u — V-o(u, P, k) + N u=0
—_ _ . O' =
at t\“% K(X) )
V-u=0,
([ ot(u, P, k) = —PId + (v0 4 v)(Vu + (Vu)?)

@ A closure equation for the TKE

Coupled system
of equations

Ok : Ve ‘o k2

0(x)

with 7 = G l(x) kz and C, adimentionalized constant.
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Lround a equations with eddy viscosity
- Ou + (uV)u — V-o(u, P, k) + N =0
ot ! K(x) ’
V-u=0,
| oe(u, P, k) = =Pld + (vg + v:)(Vu + (Vu)")

@ A closure equation for the TKE

Coupled system
of equations

Ok . Vs £12 k3

0(x)

o Coupling parameter : ,=Cy £(x) k2
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Initial and boundary conditions

Gn
G. \
rﬁg(__/_ﬁD/ Gy
0“ —_— T,

VxeQ, u(0,x)=up(x)

Vx € Q, k(0,x)= ko(x)
u]ri:u|=(u|,0), k‘rl.IO,
u|r, :0, k|r, :O,

oe(u, p, k).nlr, = —3(u.n)~(u—u) + (u.n)uy,
Ut—|r, = —(u.n)" k.

\ on
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Theoretical result : Theorem

Hypothesis
Assume :

O v; € C! and bounded,
@ 7; € C! and bounded,
© ¢ € L*° and bounded,
O K € C! and bounded,

Q uyp € Lz(Q),
Q ko € Ll(Q)

V-uo:0,

Uo.Nnjr; = uy,

ug.njr, =0,
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in flow Then the coupled problem admits a solution (u, P, k) on any
round 3 time interval [0, T] in the sense of the distributions, where
cod-end net

o u € L2([0, T], (HX())*) n L([0, T, L*()),

P c L2([0, T] x Q),
k € L43([0, T], WE4/3(Q)) n L>=([0, T], L1(Q)).

Moreover, there exists F(uy, u)(t) such that the following energy
equality holds for any t € [0, T],

2dt/ lu(t, x)[2dx +/Qut(k(t,x),x)|s(u)(t,x)|2dx+
5 t,x).n)"u(t, x) — u))[*do(x) +

Theoretical
result

2

Q K(X)

u(t,x).u(t,x)dx = F(uy,u)(t).
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Pl @ Cylindrical coordinates
cod-end net
G.P x = rcosf,
y = rsind,
z = z

with {(r,z,0),r € [fmin, Fmax)s Z € [Zmin, Zmax], 0 € [0, 7]}.
A Iy B
03

G Gy,
Axisymmetric r ";Zfé Gy
problem 0% i
Simulations r; ¢ f’% Lo
ith 1
with ¢ G,

FreeFem-++
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e
[RMAR S
Proceedings oo
in flow @ Finite elements method
modelling o
around a @ Numerical schemes :
d-end net .. 0 5
“ ZP : o Implicit scheme for the averaged Navier-Stokes/Brinkman
' equation
o Semi-implicit scheme for the turbulent kinetic energy
@ lterative algorithm
Algorithm
1. Initialization of (u, P) by solving a Stokes problem and k to
. a constant in the entire domain
problem
it o 2. For m=1, Itmax

FreeFem++

- Solving of the turbulent kinetic energy problem,

- Solving of the Navier-Stokes/Brinkman problem.
End For
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Mesh

@ Example of an unstructured body fitted mesh (10978
vertices - 21862 triangles)
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Simulations
with
FreeFem++

Choice of the parameters

e 6 6 6 6 6 o6 o o

Kq, = 10000,

K¢, = 0.000001,

K. = 0.000001,

Kep =1,

Kep =5,

Kep =6,

Mesh : 10978 nodes; 21862 triangles,

Time step : 0.66667 s,

{(x) defined locally on each triangle as its higher side

length,
C1 = 0.1; C2 = 0.05; C3 = 0.03,

@ Thickness of the net : given by the minima of u, given by

the LDV profiles.
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A stationary state is reached

@ Residual computed for u

residual for u

100
Iterations

180
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A stationary state is reached

@ Residual computed for k

Residual for k

N

50 100 180 200

Iterations
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o Finding laws for the physical parameters in the model
(depending on the mesh opening, the mesh side, ...)



Conclusion

Proceedings

in flow
modelling
cotond net @ We have a model that
G.P o Leads to satisfactory results in the axisymmetric case
= Need some more experimental data, especially on the
TKE
o Can be generalized in 3D thanks to the Fictitious Domain
Method
o Make it easier to treat the problem of a moving net
@ Current work
o Implementation of the model in 3D,
Conclusion

o Finding laws for the physical parameters in the model
(depending on the mesh opening, the mesh side, ...)

Any questions ?
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