Proceedings in flow modelling around a cod-end net

Géraldine Pichot 1,2

Advisor: Pr. R. Lewandowski 2

With the IFREMER supervision of D. Priour 1

1IFREMER, Centre de Brest

2IRMAR, Université de Rennes 1

CANUM 2006 - Minisymposium Mer - Halieutique
Improving the selectivity of trawling

⇒ By numerical simulations of the cod-end net

Main advantage: low cost of numerical simulations vs experimental measurements (at sea or in a tank),
Improving the selectivity of trawling

⇒ By numerical simulations of the cod-end net

Main advantage: low cost of numerical simulations vs experimental measurements (at sea or in a tank),

But needs of numerical models:

- A net model: discrete models. High number of meshes ⇒ Globalization techniques
- A model for the fishes: catch model or balls model
- A fluid model
Improving the selectivity of trawling

⇒ By numerical simulations of the cod-end net

Main advantage: low cost of numerical simulations vs experimental measurements (at sea or in a tank),

But needs of numerical models:

- A net model: discrete models. High number of meshes ⇒ Globalization techniques
- A model for the fishes: catch model or balls model
- A fluid model
Improving the selectivity of trawling

⇒ By numerical simulations of the cod-end net

Main advantage: low cost of numerical simulations vs experimental measurements (at sea or in a tank),

But needs of numerical models:

- A net model: discrete models. High number of meshes
 ⇒ Globalization techniques
- A model for the fishes: catch model or balls model
- A fluid model
Improving the selectivity of trawling

⇒ By numerical simulations of the cod-end net

Main advantage: low cost of numerical simulations vs experimental measurements (at sea or in a tank),

But needs of numerical models:

- A net model: discrete models. High number of meshes ⇒ Globalization techniques
- A model for the fishes: catch model or balls model
- A fluid model
Improving the selectivity of trawling

⇒ By numerical simulations of the cod-end net

Main advantage: low cost of numerical simulations vs experimental measurements (at sea or in a tank),

But needs of numerical models:

- A net model: discrete models. High number of meshes ⇒ Globalization techniques
- A model for the fishes: catch model or balls model
- A fluid model ⇒ but complex geometry of the net ...

Question

How could the net be taken into account in the fluid model?
Existing fluid models

- Hypothesis of a uniform flow: Landweber's hypothesis
- Model of an axisymmetric porous membrane: B. Vincent (ECN PhD, 1996)
- Ring model: D. Marichal (2005)

Our contribution
- A 3D turbulent fluid model and its mathematical analysis
- Development of an axisymmetric code with the free software Freefem++
- Participation in an experimental campaign to collect hydrodynamical data
- Test and validation of the code by comparison with the experimental results
Existing fluid models

- Hypothesis of a uniform flow: Landweber’s hypothesis
- Model of an axisymmetric porous membrane: B. Vincent (ECN PhD, 1996)
- Ring model: D. Marichal (2005)

Our contribution

- A 3D turbulent fluid model and its mathematical analysis
- Development of an axisymmetric code with the free software Freefem++
- Participation in an experimental campaign to collect hydrodynamical data
- Test and validation of the code by comparison with the experimental results
Outline

1. A 3D turbulent fluid model
 - Experimental context
 - Our model
 - Averaged Navier-Stokes/Brinkman equations
 - Coupled system of equations
 - Theoretical result

2. Test of the model in a simple case
 - Axisymmetric problem
 - Simulations with FreeFem++

3. Conclusion
Outline

1 A 3D turbulent fluid model
 - Experimental context
 - Our model
 - Averaged Navier-Stokes/Brinkman equations
 - Coupled system of equations
 - Theoretical result

2 Test of the model in a simple case
 - Axisymmetric problem
 - Simulations with FreeFem++

3 Conclusion
Motivations

Finding a model that could:

- Control the passage of the fluid through the net
- Be applied in the 3D case (i.e. without the hypothesis of axisymmetric flow)
- Be applied to the case of a moving net
The model built at Boulogne-sur-Mer by G. Germain and J.V. Facq

Parameters of the net:

- Side mesh: 30mm
- Number of meshes on the perimeter: 36
- Length per weight: 1200m/kg
- Twine diameter: 1.5mm

Parameters of the net:

- Side mesh: 30mm
- Number of meshes on the perimeter: 36
- Length per weight: 1200m/kg
- Twine diameter: 1.5mm
Profiles considered for the measures
LDV profiles of the velocity component u_z
Three features and their advantages

- A porous membrane model for the net ⇒ No more complex geometry of twines and nodes
- A penalization method to take the net and fishes into account: Navier-Stokes/Brinkman model with eddy viscosity ⇒ Possibility of 3D computations by the means of a Fictitious Domain Method: no complex mesh
- A closure equation for the TKE. This a kind of Reynolds Averaged Navier-Stokes model ⇒ To close the system
Three features and their advantages

- A porous membrane model for the net ⇒ No more complex geometry of twines and nodes

- A penalization method to take the net and fishes into account: Navier-Stokes/Brinkman model with eddy viscosity ⇒ Possibility of 3D computations by the means of a Fictitious Domain Method: no complex mesh

- A closure equation for the TKE. This a kind of Reynolds Averaged Navier-Stokes model ⇒ To close the system
Three features and their advantages

- A porous membrane model for the net ⇒ No more complex geometry of twines and nodes

- A penalization method to take the net and fishes into account: Navier-Stokes/Brinkman model with eddy viscosity ⇒ Possibility of 3D computations by the means of a Fictitious Domain Method: no complex mesh

- A closure equation for the TKE. This a kind of Reynolds Averaged Navier-Stokes model ⇒ To close the system
Averaged incompressible Navier-Stokes/Brinkman equations

- **Unknowns**: \((u - P)\) (mean velocity - modified pressure), \(k\) turbulent kinetic energy (TKE)

- Averaged incompressible Navier-Stokes/Brinkman equations with eddy viscosity

\[
\begin{align*}
\frac{\partial u}{\partial t} + (u \nabla)u - \nabla \cdot \sigma_t(u, P, k) + \frac{\nu_0}{K(x)} u &= 0, \\
\nabla \cdot u &= 0,
\end{align*}
\]

Where:

\[
\sigma_t(u, P, k) = -P \text{Id} + (\nu_0 + \nu_t)(\nabla u + (\nabla u)^t),
\]

\(P = p + \frac{2}{3} k\), modified pressure

\(\nu_0\) = kinematic viscosity of water.
Averaged incompressible Navier-Stokes/Brinkman equations

- Unknowns: \((u - P)\) (mean velocity - modified pressure), \(k\) turbulent kinetic energy (TKE)
- Averaged incompressible Navier-Stokes/Brinkman equations with eddy viscosity

\[
\begin{aligned}
\frac{\partial u}{\partial t} + (u \nabla)u - \nabla \cdot \sigma_t(u, P, k) + \frac{\nu_0}{K(x)} u &= 0, \\
\nabla \cdot u &= 0,
\end{aligned}
\]

Where:

\[
\begin{align*}
\sigma_t(u, P, k) &= -P \text{Id} + (\nu_0 + \nu_t)(\nabla u + (\nabla u)^t), \\
\nu_t &= C_1 \ell(x) k^{\frac{1}{2}}, \text{ eddy viscosity coefficient} \\
\ell(x) &= \text{mixing length}.
\end{align*}
\]
Averaged incompressible Navier-Stokes/Brinkman equations

- Unknowns: \((u - P)\) (mean velocity - modified pressure), \(k\) turbulent kinetic energy (TKE)
- Averaged incompressible Navier-Stokes/Brinkman equations with eddy viscosity

\[
\begin{align*}
\frac{\partial u}{\partial t} + (u \nabla)u - \nabla \cdot \sigma_t(u, P, k) + \frac{\nu_0}{K(x)} u &= 0, \\
\nabla \cdot u &= 0,
\end{align*}
\]

Where: \(K(x)\) is the permeability parameter.

\[
K(x) = \begin{cases}
1 & \text{si } x \in \Omega_w, \\
\frac{1}{\epsilon} & \rightarrow +\infty \\
\epsilon & \rightarrow 0 \\
K_f & \text{si } x \in G_f \cup G_c, \\
K_f & \text{si } x \in G_n,
\end{cases}
\]
Averaged incompressible Navier-Stokes/Brinkman equations

- Unknowns: \((u - P)\) (mean velocity - modified pressure), \(k\) turbulent kinetic energy (TKE)
- Averaged incompressible Navier-Stokes/Brinkman equations with eddy viscosity

\[
\begin{align*}
\frac{\partial u}{\partial t} + (u \nabla)u - \nabla \cdot \sigma_t(u, P, k) + \frac{\nu_0}{K(x)} u &= 0, \\
\nabla \cdot u &= 0,
\end{align*}
\]

Fictitious domain method: the fluid equations hold in the entire domain (C. S. Peskin (1972), Angot et al. (1999), Khadra et al. (2000), Carbou and Fabrie (2003))
Averaged incompressible Navier-Stokes/Brinkman equations with eddy viscosity

\[
\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \nabla) \mathbf{u} - \nabla \cdot \sigma_t(\mathbf{u}, P, k) + \frac{\nu_0}{K(x)} \mathbf{u} = 0,
\]

\[
\nabla \cdot \mathbf{u} = 0,
\]

\[
\sigma_t(\mathbf{u}, P, k) = -P \, I_d + (\nu_0 + \nu_t)(\nabla \mathbf{u} + (\nabla \mathbf{u})^t)
\]
Averaged incompressible Navier-Stokes/Brinkman equations with eddy viscosity

\[
\begin{align*}
\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \nabla) \mathbf{u} - \nabla \cdot \sigma_t(\mathbf{u}, P, k) + \frac{\nu_0}{K(x)} \mathbf{u} &= 0, \\
\nabla \cdot \mathbf{u} &= 0, \\

\sigma_t(\mathbf{u}, P, k) &= -P \mathbf{I} + (\nu_0 + \nu_t)(\nabla \mathbf{u} + (\nabla \mathbf{u})^t)
\end{align*}
\]

A closure equation for the TKE

\[
\frac{\partial k}{\partial t} + (\mathbf{u} \nabla) k = \nabla \cdot (\tilde{\nu}_t \nabla k) + \frac{\nu_t}{2} |\nabla \mathbf{u} + (\nabla \mathbf{u})^t|^2 - C_3 \frac{k^{3/2}}{\ell(x)}
\]

with \(\tilde{\nu}_t = C_2 \ell(x) k^{1/2} \) and \(C_2 \) adimensionalized constant.
Averaged incompressible Navier-Stokes/Brinkman equations with eddy viscosity

\[
\begin{aligned}
\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \nabla)\mathbf{u} - \nabla \cdot \sigma_t(\mathbf{u}, P, k) + \frac{\nu_0}{K(x)} \mathbf{u} &= 0, \\
\nabla \cdot \mathbf{u} &= 0, \\
\sigma_t(\mathbf{u}, P, k) &= -P \mathbb{1} + (\nu_0 + \nu_t)(\nabla \mathbf{u} + (\nabla \mathbf{u})^t)
\end{aligned}
\]

A closure equation for the TKE

\[
\frac{\partial k}{\partial t} + (\mathbf{u} \nabla)k = \nabla \cdot (\tilde{\nu}_t \nabla k) + \frac{\nu_t}{2} |\nabla \mathbf{u} + (\nabla \mathbf{u})^t|^2 - C_3 \frac{k^{3/2}}{\ell(x)}
\]

Coupling parameter: \(\nu_t = C_1 \ell(x) k^{1/2} \)
Initial and boundary conditions

\[
\begin{align*}
\forall x \in \Omega, \quad & u(0, x) = u_0(x) \\
\forall x \in \Omega, \quad & k(0, x) = k_0(x) \\
\Gamma_i & = \mathbb{R}^3, \quad k|_{\Gamma_i} = 0, \\
0 & |_{\Gamma_i} = 0, \quad k|_{\Gamma_i} = 0, \\
\sigma_t(u, p, k) \cdot n|_{\Gamma_o} & = -\frac{1}{2}(u \cdot n)^{-1}(u - u_I) + (u \cdot n) u_I, \\
\tilde{\nu}_t \frac{\partial k}{\partial n}|_{\Gamma_o} & = -(u \cdot n)^{-1} k.
\end{align*}
\]
Theoretical result: Theorem

Hypothesis
Assume:

1. $\nu_t \in C^1$ and bounded,
2. $\tilde{\nu}_t \in C^1$ and bounded,
3. $\ell \in L^\infty$ and bounded,
4. $K \in C^1$ and bounded,
5. $u_0 \in L^2(\Omega)$, $\nabla \cdot u_0 = 0$, $u_0 \cdot n|_{\Gamma_i} = u_i$, $u_0 \cdot n|_{\Gamma_f} = 0$,
6. $k_0 \in L^1(\Omega)$
Then the coupled problem admits a solution \((u, P, k)\) on any time interval \([0, T]\) in the sense of the distributions, where

\[
\begin{align*}
u &\in L^2([0, T], (H^1(\Omega))^2) \cap L^\infty([0, T], L^2(\Omega)), \\
P &\in L^2([0, T] \times \Omega), \\
k &\in L^{4/3}([0, T], W^{1,4/3}(\Omega)) \cap L^\infty([0, T], L^1(\Omega)).
\end{align*}
\]

Moreover, there exists \(F(u_I, u)(t)\) such that the following energy equality holds for any \(t \in [0, T]\),

\[
\begin{align*}
\frac{1}{2} \frac{d}{dt} \int_\Omega |u(t, x)|^2 dx &+ \int_\Omega \nu_t(k(t, x), x)|\varepsilon(u)(t, x)|^2 dx + \\
\frac{1}{2} \int_{\Gamma_o} (u(t, x) \cdot n)^+ |u(t, x) - u_I|^2 d\sigma(x) &+ \\
\int_\Omega \frac{\nu_0}{K(x)} u(t, x) \cdot u(t, x) dx = F(u_I, u)(t).
\end{align*}
\]
Outline

1. A 3D turbulent fluid model
 - Experimental context
 - Our model
 - Averaged Navier-Stokes/Brinkman equations
 - Coupled system of equations
 - Theoretical result

2. Test of the model in a simple case
 - Axisymmetric problem
 - Simulations with FreeFem++

3. Conclusion
Axisymmetric problem

- Hypothesis of an axisymmetric flow
- Cylindrical coordinates

\[
\begin{align*}
 x &= r \cos \theta, \\
 y &= r \sin \theta, \\
 z &= z.
\end{align*}
\]

with \(\{(r, z, \theta), r \in [r_{min}, r_{max}], z \in [z_{min}, z_{max}], \theta \in [0, \pi]\} \).
Decomposition of the net domain G_n in 3 parts

\Rightarrow To take into account the difference in permeability.
Numerical methods

- Finite elements method
- Numerical schemes:
 - Implicit scheme for the averaged Navier-Stokes/Brinkman equation
 - Semi-implicit scheme for the turbulent kinetic energy
- Iterative algorithm

Algorithm

1. Initialization of \((u, P)\) by solving a Stokes problem and \(k\) to a constant in the entire domain

2. For \(m=1, \text{Itmax}\)
 - Solving of the turbulent kinetic energy problem,
 - Solving of the Navier-Stokes/Brinkman problem.

End For
Mesh

Example of an unstructured body fitted mesh (10978 vertices - 21862 triangles)
Choice of the parameters

- $K_{\Omega_w} = 10000,$
- $K_{G_f} = 0.000001,$
- $K_{G_c} = 0.000001,$
- $K_{G_1^n} = 1,$
- $K_{G_2^n} = 5,$
- $K_{G_3^n} = 6,$
- Mesh : 10978 nodes ; 21862 triangles,
- Time step : 0.66667 s,
- $\ell(x)$ defined locally on each triangle as its higher side length,
- $C_1 = 0.1 ; C_2 = 0.05 ; C_3 = 0.03,$
- Thickness of the net : given by the minima of u_z given by the LDV profiles.
Experimental vs numerical u_z profiles at it 50
Streamlines
Proceedings in flow modelling around a cod-end net

G.P

Introduction
Outline
A 3D turbulent fluid model
Test of the model in a simple case
Axisymmetric problem
Simulations with FreeFem++
Conclusion

Level curves of u_z
Level curves of u_z
Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Test of the model in a simple case

Axisymmetric problem

Simulations with FreeFem++

Conclusion

Level curves of u_r
Proceedings in flow modelling around a cod-end net

G.P

Introduction
Outline
A 3D turbulent fluid model
Test of the model in a simple case
Axisymmetric problem
Simulations with FreeFem++
Conclusion

Level curves of k
Proceedings in flow modelling around a cod-end net

G.P

Introduction
Outline
A 3D turbulent fluid model
Test of the model in a simple case
Axisymmetric problem
Simulations with FreeFem++
Conclusion

Level curves of k
A stationary state is reached

- Residual computed for u
A stationary state is reached

- Residual computed for k

![Residual computed for k graph]
A 3D turbulent fluid model
- Experimental context
- Our model
- Averaged Navier-Stokes/Brinkman equations
- Coupled system of equations
- Theoretical result

Test of the model in a simple case
- Axisymmetric problem
- Simulations with FreeFem++

Conclusion
Conclusion

- We have a model that
 - Leads to satisfactory results in the axisymmetric case
 ⇒ Need some more experimental data, especially on the TKE
 - Can be generalized in 3D thanks to the Fictitious Domain Method
 - Make it easier to treat the problem of a moving net

- Current work
 - Implementation of the model in 3D,
 - Finding laws for the physical parameters in the model (depending on the mesh opening, the mesh side, ...)

- We have a model that
 - Leads to satisfactory results in the axisymmetric case
 ⇒ Need some more experimental data, especially on the TKE
 - Can be generalized in 3D thanks to the Fictitious Domain Method
 - Make it easier to treat the problem of a moving net
Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Test of the model in a simple case

Conclusion

We have a model that

- Leads to satisfactory results in the axisymmetric case
 ⇒ Need some more experimental data, especially on the TKE
- Can be generalized in 3D thanks to the Fictitious Domain Method
- Make it easier to treat the problem of a moving net

Current work

- Implementation of the model in 3D,
- Finding laws for the physical parameters in the model (depending on the mesh opening, the mesh side, ...)
Conclusion

- We have a model that
 - Leads to satisfactory results in the axisymmetric case
 - Need some more experimental data, especially on the TKE
 - Can be generalized in 3D thanks to the Fictitious Domain Method
 - Make it easier to treat the problem of a moving net

- Current work
 - Implementation of the model in 3D,
 - Finding laws for the physical parameters in the model (depending on the mesh opening, the mesh side, ...)

Any questions?