

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Test of the model in a simple case

Conclusion

Proceedings in flow modelling around a cod-end net

Géraldine Pichot ^{1,2}

Advisor: Pr. R. Lewandowski ²

With the IFREMER supervision of D. Priour ¹

¹IFREMER, Centre de Brest

²IRMAR, Université de Rennes 1

CANUM 2006 - Minisymposium Mer - Halieutique

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Test of the model in a simple case

Conclusion

 \Rightarrow By numerical simulations of the the cod-end net

Main advantage : low cost of numerical simulations vs experimental measurements (at sea or in a tank),

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Test of the model in a simple case

Conclusion

 \Rightarrow By numerical simulations of the the cod-end net

Main advantage : low cost of numerical simulations vs experimental measurements (at sea or in a tank),

But needs of numerical models :

A net model : discrete models. High number of meshes
 ⇒ Globalization techniques

A model for the fishes : catch model or balls model

A fluid model

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Test of the model in a simple case

Conclusion

 \Rightarrow By numerical simulations of the the cod-end net

Main advantage : low cost of numerical simulations vs experimental measurements (at sea or in a tank),

But needs of numerical models :

A net model : discrete models. High number of meshes
 ⇒ Globalization techniques

A model for the fishes : catch model or balls model
 A fluid model

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Test of the model in a simple case

Conclusion

 \Rightarrow By numerical simulations of the the cod-end net

Main advantage : low cost of numerical simulations vs experimental measurements (at sea or in a tank),

But needs of numerical models :

- A net model : discrete models. High number of meshes
 ⇒ Globalization techniques
- A model for the fishes : catch model or balls model

• A fluid mode

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Test of the model in a simple case

Conclusion

 \Rightarrow By numerical simulations of the the cod-end net

Main advantage : low cost of numerical simulations vs experimental measurements (at sea or in a tank),

But needs of numerical models :

- A net model : discrete models. High number of meshes
 ⇒ Globalization techniques
- A model for the fishes : catch model or balls model
- A fluid model

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Test of the model in a simple case

Conclusion

 \Rightarrow By numerical simulations of the the cod-end net

Main advantage : low cost of numerical simulations vs experimental measurements (at sea or in a tank),

But needs of numerical models :

- A net model : discrete models. High number of meshes
 ⇒ Globalization techniques
- A model for the fishes : catch model or balls model
- A fluid model \Rightarrow but complex geometry of the net ...

Question

How could the net be taken into account in the fluid model?

Existing fluid models

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Test of the model in a simple case

Conclusion

- Hypothesis of a uniform flow : Landweber's hypothesis
- Model of an axisymmetric porous membrane : B. Vincent (ECN PhD, 1996)
- Ring model : D. Marichal (2005)

Our contribution

- A 3D turbulent fluid model and its mathematical analysis
- Development of an axisymmetric code with the free software Freefem++
- Participation in an experimental campaign to collect hydrodynamical data
- Test and validation of the code by comparison with the experimental results

Existing fluid models

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Test of the model in a simple case

Conclusion

- Hypothesis of a uniform flow : Landweber's hypothesis
- Model of an axisymmetric porous membrane : B. Vincent (ECN PhD, 1996)
- Ring model : D. Marichal (2005)

Our contribution

- A 3D turbulent fluid model and its mathematical analysis
- Development of an axisymmetric code with the free software Freefem++
- Participation in an experimental campaign to collect hydrodynamical data
- Test and validation of the code by comparison with the experimental results

Outline

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Test of the model in a simple case

Conclusion

A 3D turbulent fluid model

- Experimental context
- Our model
- Averaged Navier-Stokes/Brinkman equations
- Coupled system of equations
- Theoretical result
- 2 Test of the model in a simple case
 - Axisymmetric problem
 - Simulations with FreeFem++

Outline

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Experimental context Our model Averaged Navier-Stokes/Brinkman equations Coupled system of equations Theoretical result

Test of the model in a simple case

Conclusion

A 3D turbulent fluid model

- Experimental context
- Our model
- Averaged Navier-Stokes/Brinkman equations
- Coupled system of equations
- Theoretical result

Test of the model in a simple case

- Axisymmetric problem
- Simulations with FreeFem++

Conclusion

Motivations

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Experimental context Our model Averaged Navier-Stokes/Brinkman equations Coupled system of equations Theoretical result

Test of the model in a simple case

Conclusion

Finding a model that could :

- Control the passage of the fluid through the net
- Be applied in the 3D case (i.e. without the hypothesis of axisymmetric flow)
- Be applied to the case of a moving net

The model built at Boulogne-sur-Mer by G. Germain and J.V. Facq

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Experimental context

Our model Averaged Navier-Stokes/Brinkman equations Coupled system of equations Theoretical result

Test of the model in a simple case

Conclusion

Parameters of the net :

- Side mesh : 30mm
- Number of meshes on the perimeter : 36
- Length per weight : 1200m/kg
- Twine diameter : 1,5mm

Profiles considered for the measures

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Experimental context

Our model Averaged Navier-Stokes/Brinkman equations Coupled system of equations Theoretical result

Test of the model in a simple case

Conclusion

LDV profiles of the velocity component u_z

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Experimental context

Our model Averaged Navier-Stokes/Brinkman equations Coupled system of equations Theoretical result

Test of the model in a simple case

Conclusion

 $\triangleleft \hookrightarrow$

Three features and their advantages

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Experimental context

Our model

Averaged Navier-Stokes/Brinkman equations Coupled system of equations Theoretical result

Test of the model in a simple case

Conclusion

 A porous membrane model for the net ⇒ No more complex geometry of twines and nodes

A penalization method to take the net and fishes into account : Navier-Stokes/Brinkman model with eddy viscosity ⇒ Possibility of 3D computations by the means of a Fighting Domain Method and complex methods.
 A closure equation for the TKE. This a kind of Reynolds Averaged Neuron Stokes model = To close the system.

Three features and their advantages

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Experimental context

Our model

Averaged Navier-Stokes/Brinkman equations Coupled system of equations Theoretical result

Test of the model in a simple case

Conclusion

 A porous membrane model for the net ⇒ No more complex geometry of twines and nodes

A penalization method to take the net and fishes into account : Navier-Stokes/Brinkman model with eddy viscosity ⇒ Possibility of 3D computations by the means of a Fictitious Domain Method : no complex mesh
 A closure equation for the TKE. This a kind of Reynolds

Three features and their advantages

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Experimental context

Our model

Averaged Navier-Stokes/Brinkman equations Coupled system of equations Theoretical result

Test of the model in a simple case

Conclusion

 A porous membrane model for the net ⇒ No more complex geometry of twines and nodes

- A penalization method to take the net and fishes into account : Navier-Stokes/Brinkman model with eddy viscosity ⇒ Possibility of 3D computations by the means of a Fictitious Domain Method : no complex mesh
- A closure equation for the TKE. This a kind of Reynolds Averaged Navier-Stokes model ⇒ To close the system

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Experimental context Our model

Averaged Navier-Stokes/Brinkman equations

Coupled system of equations

Theoretical result

Test of the model in a simple case

Conclusion

- Unknowns : (u P) (mean velocity modified pressure), k turbulent kinetic energy (TKE)
- Averaged incompressible Navier-Stokes/Brinkman equations with eddy viscosity

$$\begin{cases} \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \nabla)\mathbf{u} - \nabla \cdot \sigma_{\mathbf{t}}(\mathbf{u}, P, k) + \frac{\nu_0}{K(\mathbf{x})} \mathbf{u} = 0, \\ \nabla \cdot \mathbf{u} = 0, \end{cases}$$

Where :

 $\begin{aligned} \sigma_{\mathbf{t}}(\mathbf{u}, P, k) &= -P \, ld + (\nu_0 + \nu_t) (\nabla \mathbf{u} + (\nabla \mathbf{u})^t), \\ P &= p + \frac{2}{3}k, \text{ modified pressure} \\ \nu_0 &= \text{ kinematic viscosity of water.} \end{aligned}$

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Experimental context Our model

Averaged Navier-Stokes/Brinkman equations

Coupled system of equations

Theoretical result

Test of the model in a simple case

Conclusion

- Unknowns : (u P) (mean velocity modified pressure), k turbulent kinetic energy (TKE)
- Averaged incompressible Navier-Stokes/Brinkman equations with eddy viscosity

$$\begin{cases} \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \nabla)\mathbf{u} - \nabla \cdot \sigma_{\mathbf{t}}(\mathbf{u}, P, k) + \frac{\nu_0}{K(\mathbf{x})} \mathbf{u} = 0, \\ \nabla \cdot \mathbf{u} = 0, \end{cases}$$

Where :

 $\begin{aligned} \sigma_{\mathbf{t}}(\mathbf{u}, P, k) &= -P \, Id + (\nu_0 + \nu_t) (\nabla \mathbf{u} + (\nabla \mathbf{u})^t), \\ \nu_t &= C_1 \, \ell(\mathbf{x}) \, k^{\frac{1}{2}}, \text{ eddy viscosity coefficient} \\ \ell(\mathbf{x}) &= \text{mixing length.} \end{aligned}$

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Experimental context Our model

Averaged Navier-Stokes/Brinkman equations

Coupled system of equations

Theoretical result

Test of the model in a simple case

Conclusion

- Unknowns : (u P) (mean velocity modified pressure), k turbulent kinetic energy (TKE)
- Averaged incompressible Navier-Stokes/Brinkman equations with eddy viscosity

$$\begin{cases} \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \nabla)\mathbf{u} - \nabla \cdot \sigma_{\mathbf{t}}(\mathbf{u}, P, k) + \frac{\nu_{0}}{\mathcal{K}(\mathbf{x})} \mathbf{u} = 0, \\ \nabla \cdot \mathbf{u} = 0, \end{cases}$$

Where : $K(\mathbf{x})$ is the permeability parameter.

$$\begin{split} \mathcal{K}(\mathbf{x}) &= \frac{1}{\epsilon} \quad \rightarrow \quad +\infty \quad \text{si } x \in \Omega_w, \\ \mathcal{K}(\mathbf{x}) &= \epsilon \quad \rightarrow \quad 0 \qquad \text{si } x \in G_f \cup G_c, \\ \mathcal{K}(\mathbf{x}) &= \mathcal{K}_f \qquad \qquad \text{si } x \in G_n, \end{split}$$

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Experimental context Our model

Averaged Navier-Stokes/Brinkman equations

Coupled system of equations Theoretical

result

Test of the model in a simple case

Conclusion

- Unknowns : (u P) (mean velocity modified pressure), k turbulent kinetic energy (TKE)
- Averaged incompressible Navier-Stokes/Brinkman equations with eddy viscosity

$$\begin{cases} \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \nabla)\mathbf{u} - \nabla \cdot \sigma_{\mathbf{t}}(\mathbf{u}, P, k) + \frac{\nu_{0}}{\mathcal{K}(\mathbf{x})} \mathbf{u} = 0, \\ \nabla \cdot \mathbf{u} = 0, \end{cases}$$

Fictitious domain method : the fluid equations hold in the entire domain (C. S. Peskin (1972), Angot et al. (1999), Khadra et al. (2000), Carbou and Fabrie (2003))

System

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Experimental context Our model Averaged Navier-Stokes/Brinkman equations

Coupled system of equations

Theoretical result

Test of the model in a simple case

Conclusion

• Averaged incompressible Navier-Stokes/Brinkman equations with eddy viscosity

$$\begin{cases} \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \nabla)\mathbf{u} - \nabla \cdot \sigma_{\mathbf{t}}(\mathbf{u}, P, k) + \frac{\nu_{0}}{K(\mathbf{x})}\mathbf{u} = 0, \\ \nabla \cdot \mathbf{u} = 0, \\ \sigma_{\mathbf{t}}(\mathbf{u}, P, k) = -P \, Id + (\nu_{0} + \nu_{t})(\nabla \mathbf{u} + (\nabla \mathbf{u})^{t}) \end{cases}$$

System

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Experimental context Our model Averaged Navier-Stokes/Brinkman equations

Coupled system of equations

Theoretical result

Test of the model in a simple case

Conclusion

• Averaged incompressible Navier-Stokes/Brinkman equations with eddy viscosity

$$\begin{cases} \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \nabla)\mathbf{u} - \nabla \cdot \sigma_{\mathbf{t}}(\mathbf{u}, P, k) + \frac{\nu_0}{\mathcal{K}(\mathbf{x})}\mathbf{u} = 0, \\ \nabla \cdot \mathbf{u} = 0, \\ \sigma_{\mathbf{t}}(\mathbf{u}, P, k) = -P \, Id + (\nu_0 + \nu_t)(\nabla \mathbf{u} + (\nabla \mathbf{u})^t) \end{cases}$$

• A closure equation for the TKE

$$\frac{\partial k}{\partial t} + (\mathbf{u}\nabla)k = \nabla \cdot (\tilde{\nu}_t \nabla k) + \frac{\nu_t}{2} |\nabla \mathbf{u} + (\nabla \mathbf{u})^t|^2 - C_3 \frac{k^{\frac{3}{2}}}{\ell(x)}$$

with $\tilde{\nu}_t = C_2 \ell(\mathbf{x}) k^{\frac{1}{2}}$ and C_2 adimentionalized constant.

System

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Experimental context Our model Averaged Navier-Stokes/Brinkman equations

Coupled system of equations

Theoretical result

Test of the model in a simple case

Conclusion

• Averaged incompressible Navier-Stokes/Brinkman equations with eddy viscosity

$$\begin{cases} \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \nabla)\mathbf{u} - \nabla \cdot \sigma_{\mathbf{t}}(\mathbf{u}, P, k) + \frac{\nu_{0}}{K(\mathbf{x})}\mathbf{u} = 0, \\ \nabla \cdot \mathbf{u} = 0, \\ \sigma_{\mathbf{t}}(\mathbf{u}, P, k) = -P \, ld + (\nu_{0} + \nu_{t})(\nabla \mathbf{u} + (\nabla \mathbf{u})^{t}) \end{cases}$$

• A closure equation for the TKE

$$\frac{\partial k}{\partial t} + (\mathbf{u}\nabla)k = \nabla \cdot (\tilde{\nu}_t \nabla k) + \frac{\nu_t}{2} |\nabla \mathbf{u} + (\nabla \mathbf{u})^t|^2 - C_3 \frac{k^{\frac{3}{2}}}{\ell(x)}$$

• Coupling parameter : $\nu_t = C_1 \ell(\mathbf{x}) k_{-}^{\frac{1}{2}}$

Initial and boundary conditions

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Experimental context Our model Averaged Navier-Stokes/Brinkman equations

Coupled system of equations

Theoretical result

Test of the model in a simple case

Conclusion

 $\begin{aligned} \forall \mathbf{x} \in \Omega, \quad \mathbf{u}(0, \mathbf{x}) &= \mathbf{u}_0(\mathbf{x}) \\ \forall \mathbf{x} \in \Omega, \quad k(0, \mathbf{x}) &= k_0(\mathbf{x}) \\ \mathbf{u}|_{\Gamma_i} &= \mathbf{u}_{\mathsf{I}} = (u_{\mathsf{I}}, 0), \quad k|_{\Gamma_i} = 0, \end{aligned}$ $\mathbf{u}|_{\Gamma_l} = \mathbf{0}, \quad k|_{\Gamma_l} = \mathbf{0},$ $\sigma_{\mathbf{t}}(\mathbf{u},\boldsymbol{p},k).\,\mathbf{n}|_{\Gamma_{\alpha}} = -\frac{1}{2}(\mathbf{u}.\mathbf{n})^{-}(\mathbf{u}-\mathbf{u}_{\mathsf{I}}) + (\mathbf{u}.\mathbf{n})\mathbf{u}_{\mathsf{I}},$ $\tilde{\nu}_t \frac{\partial k}{\partial k}$ $|_{\Gamma_o} = -(\mathbf{u}.\mathbf{n})^- k.$

Theoretical result : Theorem

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Experimental context Our model Averaged Navier-Stokes/Brinkman equations Coupled system of equations

Theoretical result

Test of the model in a simple case

Conclusion

Hypothesis

Assume :

- $\bullet \ \nu_t \in C^1 \text{ and bounded},$
- **2** $\tilde{\nu}_t \in C^1$ and bounded,
- **3** $\ell \in L^{\infty}$ and bounded,
- $K \in C^1$ and bounded,

Theoretical result : Theorem

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Experimental context Our model Averaged Navier-Stokes/Brinkman equations Coupled system of equations

Theoretical result

Test of the model in a simple case

Conclusion

Then the coupled problem admits a solution (\mathbf{u}, P, k) on any time interval [0, T] in the sense of the distributions, where

u ∈
$$L^2([0, T], (H^1(\Omega))^2) \cap L^\infty([0, T], L^2(\Omega)),$$

 $P ∈ L^2([0, T] × Ω),$
 $k ∈ L^{4/3}([0, T], W^{1,4/3}(\Omega)) \cap L^\infty([0, T], L^1(\Omega))$

Moreover, there exists $F(\mathbf{u}_{I}, \mathbf{u})(t)$ such that the following energy equality holds for any $t \in [0, T]$,

$$\frac{1}{2}\frac{d}{dt}\int_{\Omega}|\mathbf{u}(t,\mathbf{x})|^{2}d\mathbf{x} + \int_{\Omega}\nu_{t}(k(t,\mathbf{x}),\mathbf{x})|\varepsilon(\mathbf{u})(t,\mathbf{x})|^{2}d\mathbf{x} + \frac{1}{2}\int_{\Gamma_{o}}(\mathbf{u}(t,\mathbf{x}).\mathbf{n})^{+}|\mathbf{u}(t,\mathbf{x})-\mathbf{u}_{I}\rangle|^{2}d\sigma(\mathbf{x}) + \int_{\Omega}\frac{\nu_{0}}{K(\mathbf{x})}\mathbf{u}(t,\mathbf{x}).\mathbf{u}(t,\mathbf{x})d\mathbf{x} = F(\mathbf{u}_{I},\mathbf{u})(t).$$

Outline

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Test of the model in a simple case

Axisymmetric problem Simulations with FreeFem++

Conclusion

A 3D turbulent fluid mode

- Experimental context
- Our model
- Averaged Navier-Stokes/Brinkman equations
- Coupled system of equations
- Theoretical result
- **2** Test of the model in a simple case
 - Axisymmetric problem
 - Simulations with FreeFem++

3 Conclusion

Axisymmetric problem

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Test of the model in a simple case

Axisymmetric problem

Simulations with FreeFem++

Conclusion

- Hypothesis of an axisymmetric flow
- Cylindrical coordinates

$$\begin{cases} x = r\cos\theta, \\ y = r\sin\theta, \\ z = z. \end{cases}$$

with $\{(r, z, \theta), r \in [r_{min}, r_{max}], z \in [z_{min}, z_{max}], \theta \in [0, \pi]\}$.

✓

Decomposition of the net domain G_n in 3 parts

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Test of the model in a simple case

Axisymmetric problem

Simulations with FreeFem++

Conclusion

\Rightarrow To take into account the difference in permeability.

Numerical methods

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Test of the model in a simple case

Axisymmetric problem

Simulations with FreeFem++

Conclusion

• Finite elements method

- Numerical schemes :
 - Implicit scheme for the averaged Navier-Stokes/Brinkman equation
 - Semi-implicit scheme for the turbulent kinetic energy
- Iterative algorithm

Algorithm

- 1. Initialization of (\mathbf{u}, P) by solving a Stokes problem and k to a constant in the entire domain
- 2. For m=1, Itmax
 - Solving of the turbulent kinetic energy problem,
 - Solving of the Navier-Stokes/Brinkman problem. End For

Mesh

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Test of the model in a simple case

Axisymmetric problem

Simulations with FreeFem++

Conclusion

• Example of an unstructured body fitted mesh (10978 vertices - 21862 triangles)

Choice of the parameters

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Test of the model in a simple case

Axisymmetric problem

Simulations with FreeFem++

Conclusion

- $K_{\Omega_w} = 10000$,
- $K_{G_f} = 0.000001$,
- $K_{G_c} = 0.000001$,
- $K_{G_1^n} = 1$,
- $K_{G_2^n} = 5$,
- $K_{G_3^n} = 6$,
- Mesh : 10978 nodes ; 21862 triangles,
- Time step : 0.66667 s,
- *l*(x) defined locally on each triangle as its higher side length,
- $C_1 = 0.1$; $C_2 = 0.05$; $C_3 = 0.03$,
- Thickness of the net : given by the minima of u_z given by the LDV profiles.

Experimental vs numerical u_z profiles at it 50

(ロショ戸ション) キャット ほう うくの

Experimental vs numerical u_z profiles at it 50

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Test of the model in a simple case

Axisymmetric problem

Simulations with FreeFem++

Conclusion

(ロショョン・ボン・ボリン・ヨー シック

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Test of the model in a simple case

Axisymmetric problem

Simulations with FreeFem++

Conclusion

(ロショョン・ボン・ボリン・ヨー シック

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Test of the model in a simple case

Axisymmetric problem

Simulations with FreeFem++

Conclusion

ロンスロシスロシスロシーヨーのへの

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Test of the model in a simple case

Axisymmetric problem

Simulations with FreeFem++

Conclusion

 $\rightarrow \longrightarrow$

ロショア・モディモシーモーのへの

Streamlines

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Test of the model in a simple case

Axisymmetric problem

Simulations with FreeFem++

Level curves of u_z

G.P

Introduction

Outline

A 3D turbulent flui model

Test of the model in a simple case

Axisymmetric problem

Simulations with FreeFem++

Level curves of u_z

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent flui model

Test of the model in a simple case

Axisymmetric problem

Simulations with FreeFem++

Conclusion

ロシュロシュルシュルシュア・ション

Level curves of u_r

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Test of the model in a simple case

Axisymmetric problem

Simulations with FreeFem++

Conclusion

ロショクションション・モーション

Level curves of k

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Test of the model in a simple case

Axisymmetric problem

Simulations with FreeFem++

Level curves of k

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Test of the model in a simple case

Axisymmetric problem

Simulations with FreeFem++

Conclusion

ロンスロシスロシスロシーヨーのへの

A stationary state is reached

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Test of the model in a simple case

Axisymmetric problem

Simulations with FreeFem++

Conclusion

• Residual computed for *u*

ロシュロシュルシュルシュア・ション

A stationary state is reached

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Test of the model in a simple case

Axisymmetric problem

Simulations with FreeFem++

Conclusion

• Residual computed for k

しゃうゆ とうそう さんりょくし

Outline

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

A 3D turbulent fluid model

Test of the model in a simple case

Conclusion

A 3D turbulent fluid model

- Experimental context
- Our model
- Averaged Navier-Stokes/Brinkman equations
- Coupled system of equations
- Theoretical result

Test of the model in a simple case

• Simulations with FreeFem++

Conclusion

Proceedings in flow modelling around a cod-end net

G.P

- Introduction
- Outline
- A 3D turbulent fluid model
- Test of the model in a simple case

- We have a model that
 - Leads to satisfactory results in the axisymmetric case \Rightarrow Need some more experimental data, especially on the TKE
 - Can be generalized in 3D thanks to the Fictitious Domain Method
 - Make it easier to treat the problem of a moving net
 - Current work
 - Implementation of the model in 3D,
 - Finding laws for the physical parameters in the model (depending on the mesh opening, the mesh side, ...)

Conclusion

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

- A 3D turbulent fluid model
- Test of the model in a simple case

- We have a model that
 - Leads to satisfactory results in the axisymmetric case \Rightarrow Need some more experimental data, especially on the TKE
 - Can be generalized in 3D thanks to the Fictitious Domain Method
 - Make it easier to treat the problem of a moving net
- Current work
 - Implementation of the model in 3D,
 - Finding laws for the physical parameters in the model (depending on the mesh opening, the mesh side, ...)

Conclusion

Proceedings in flow modelling around a cod-end net

G.P

Introduction

Outline

- A 3D turbulent fluid model
- Test of the model in a simple case

Conclusion

- We have a model that
 - Leads to satisfactory results in the axisymmetric case \Rightarrow Need some more experimental data, especially on the TKE
 - Can be generalized in 3D thanks to the Fictitious Domain Method
 - Make it easier to treat the problem of a moving net
- Current work
 - Implementation of the model in 3D,
 - Finding laws for the physical parameters in the model (depending on the mesh opening, the mesh side, ...)

Any questions?