Simulation numérique pour le micromagnétisme

Stéphane Labbé

Université Paris 11, Laboratoire de Mathématique.

Mini Symposium 4, CANUM 2006

Le modèle du micromagnétisme

La simulation numérique pour le micromagnétisme Simulation de l'évolution de l'aimantation

- Simulation de la susceptibilité hyperfréquence
- Quelques simulations
 - Simulation de l'évolution

Bases du micromagnétisme

Fonctionnelle d'énergie et système dynamique

$$E(m) = \frac{A}{2} \int_{\Omega} |\nabla m|^2 + \frac{1}{2} \int_{\mathbb{R}^3} |H_d(m)|^2 + \int_{\Omega} \phi(m) - \int_{\Omega} m H_{ext}$$

Landau et Lifchitz

$$\frac{\partial m}{\partial t} = -m \wedge H(m) - \alpha m \wedge (m \wedge H(m)),$$

où H(m) est le champ effectif.

Bases du micromagnétisme

Le champ effectif est en fait l'opposé de la différentielle de l'énergie E(m) par rapport à m. On se place ici dans le cas où : $\Phi(m) = \frac{K}{2}(|m|^2 - (m.u)^2)$ où uest un élement de $L^{\infty}(\mathbb{R}^3, S^2)$.

Champ effectif

$$H(m) = A \triangle m + H_d(m) + K(m.u)u + H_{ext},$$

Bases du micromagnétisme

Quelques remarques :

- Les solutions d'équilibre vérifient : $||H(m) \wedge m||_{0,\Omega} = 0$.
- Si le champ extérieur est indépendant du temps, l'énergie des solutions du système de Landau et Lifchitz décroit.
- La norme locale des solutions du système de Landau et Lifchitz est conservée.

Lien entre dynamique et statique : au moins formellement, les états asymptotiques du système de Landau et Lifchitz sont des états d'équilibre du système statique. Le processus dynamique permet de "choisir" des états d'équilibre particuliers.

Les objectifs de la simulation

Problème numériques : construire un schéma conservant au mieux les principales propriétés de système

- Les propriétés du champ démagnétisant,
- La conservation de la norme locale de l'aimantation,
- La décroissance de l'énergie.

Problème physique : il faut pouvoir comparer les résultats obtenus numériquement avec les résultats expérimentaux. Pour celà, plusieurs moyens

- calcul de cycles d'hystérésis : demande de calculer de nombreux états d'équilibre, d'où la nécessité de calculs rapides.
- calcul de la susceptibilité hyperfréquence : effectué à partir des équations de Landau Lifchitz linéarisées.

EMicroM – Champ démagnétisant

Problématique : conserver les propriétés de l'opérateur continu (positivité et norme inférieure à un) mais aussi avoir une méthode de calcul performante.

Discrétisation de type volumes finis : utilisation de la formule de représentation du champ démagnétisant

Formule de représentation

$$H_d(m) = -A(m) = \operatorname{grad}\operatorname{div}\left(m\star rac{1}{4\pi |x|}
ight)$$

Discrétisation spatiale

$$\Omega = \bigcup_{i=1}^{N} \Omega_i, \ \ \Omega_i = \prod_{i=1}^{3} [x_i, x_i + h[$$

V_h : fonctions constantes par morceaux sur les mailles.

Evolution Susceptibilité

EMicroM – Champ démagnétisant

Formule de représentation discrète

$$H_d^h((m_j)_{j=1}^N)_i = \tilde{\mathsf{P}}_h \circ H_d \circ \mathsf{R}_h((m_j)_{j=1}^N)_i$$
$$= \frac{1}{|\Omega_i|} \int_{\Omega_i} \left\{ \sum_{j=1}^N m_j \int_{\Omega_j} \operatorname{grad} \operatorname{div} \left(\frac{1}{4\pi |x - y|} \right) dy \right\} dx$$

 R_h : relèvement de V_h vers $L^2(\mathbb{R}^3, \mathbb{R}^3)$. Calculé analytiquement. \tilde{P}_h : projection de $L^2(\mathbb{R}^3, \mathbb{R}^3)$ sur V_h . Calculée numériquement par intégration de Gauss.

Evolution Susceptibilite

EMicroM – Champ démagnétisant

Evolution Susceptibilité

EMicroM – Champ démagnétisant

Matrice 2 m

Evolution Susceptibilité

EMicroM – Champ démagnétisant

EMicroM – Champ démagnétisant

L'approximation ainsi construite :

- positive, de norme inférieure ou égale à 1,
- calculé avec une complexité en O(Nlog(N)) où N est le nombre de mailles.
- Peut-être appliquée à toutes les formes de domaines.

EMicroM – Champ démagnétisant : extension

Collaboration avec S. Faure (Université Paris 11)

But : avoir une méthode compatible avec la méthode de calcul rapide dans le cas non périodique.

Approche : utilisation de la décroissance du champ à travers un maillage diadique multi-niveaux.

Evolution Susceptibilité

EMicroM – Schéma en temps

Ce que l'on veut respecter dans le schéma en temps

- décroissance de l'énergie,
- conservation de la norme de l'aimantation.
- Les contraintes
 - problème "plein" (champ démagnétisant) rendant peu viable les schémas implicites.

Evolution Susceptibilité

EMicroM – Schéma en temps

On choisi donc un schéma explicite

Schéma en temps

$$\begin{cases} m_{i+1} = m_i + \Delta t_i \ F_h(m_i, \Delta t_i, H_{ext}), \\ m_0 = m(0), \end{cases}$$

ou

$$F_h(m_i, \Delta t_i, H_{ext}) = f_h(m_i, H_{ext}) + \frac{\Delta t_i^2}{2} D_m f_h(m_i, H_{ext}) f_h$$

EMicroM – Schéma en temps

Le pas de temps Δt_i est alors optimisé pour assurer :

• la décroissance optimale de l'énergie :

$$E(m^{n+1}) - E(m^n) = -\alpha \Delta t_n \|m^n \wedge H(m^n)\|^2 + O(\Delta t_i^2).$$

- La conservation de la norme de l'aimantation : $|m| = 1 + O(\Delta t_i^2)$ en tout point du maillage.
- La convergence de la discrétisation dans les espaces adéquates.

Position du problème

La susceptibilité

 Réponse δm e^{iωt} du système à de petites perturbations harmoniques δh e^{iωt} autour de la position d'équilibre m_{eq}.

Comment la simule-t-on?

- Linéarisation des équations autour de l'équilibre,
- Résolution de systèmes linéaires pour un échantillonnage de fréquences.

Difficultés

- Beaucoup de degrés de liberté
- Système très mal conditionné

Equations

Perturbation du champ extérieur suivant trois directions :

$$\delta h_1 e^{i\omega t}, \delta h_2 e^{i\omega t}, \delta h_3 e^{i\omega t}$$

 $(\delta h_1, \delta h_2, \delta h_3)$: base orthogonale.

Réponses supposées harmoniques obtenues par linéarisation autour de m_{eq} :

$$\delta m_1 e^{i\omega t}, \delta m_2 e^{i\omega t}, \delta m_3 e^{i\omega t}$$

On définit alors la susceptibilité

$$\forall (i,j) \in \{1,..,3\}^2, \ \chi(\omega)_{i,j} = (\delta m_i, \delta h_j)_{(L^2(\Omega))^3}$$

Evolution Susceptibilité

Equations

Linéarisation

Système linéarisé autour d'un état d'équilibre pour une perturbation $\delta h e^{i\omega t}$ et une réponse $\delta m e^{i\omega t}$

$$i\omega\delta m - (D_1 \circ h + D_2)\delta m = D_1\delta h$$

Avec

$$D_1 \ u = -m_{eq} \wedge u - \alpha m_{eq} \wedge (m_{eq} \wedge u)$$

$$D_2 \ u = H(m_{eq}) \wedge u - \alpha m_{eq}(u \wedge H(m_{eq}))$$

Evolution Susceptibilité

SMicroM

Discrétisation Problème discret pour N mailles :

$$(i\omega Id_{3N} - D_1^h H_h - D_2^h)\delta m^h = D_1^h \delta h^h$$

Où D_1^h , D_2^h et H_h sont des matrices d'ordre 3 N (même discrétisation que pour le problème d'équilibre).

Evolution Susceptibilité

SMicroM

Préconditionnement

Grâce à la forme particulière de D_1^h et D_2^h on montre que : Un bon préconditionnement revient à utiliser l'inverse de $i\omega \ Id_{3N} - \triangle^h$ Mais Calcul de $(i\omega \ Id_{3N} - \triangle^h)^{-1}$ trop coûteux. Solution

- Utilisation de la projection de *i*ω *Id*_{3N} − △^h sur les matrices circulantes au sens de la norme de Froebenius.
- Exploitation des propriétés des matrices circulantes pour calculer le produit de l'inverse approché par un vecteur avec une complexité de O(N log(N)).

Dynamique

Vortex dans une plaque hexagonale de cobalt

Plaque hexagonale de 3400 À de diamètre et 368 À d'épaisseur.

Configuration initiale : aimantation aléatoire.

Anisotropie uniaxiale d'axe perpendiculaire à la plaque.

Ms	Aimantation (A/m)	1,4.10 ⁶
K	Anisotropie (J/m ³)	5,00.10 ⁵
Α	Echange (J/m)	10 ⁻¹¹

Maillage : 98 304 degrès de liberté.

Dynamique

ricoultuto

Vortex dans une plaque hexagonale de cobalt

UNIVERSITÉ PARIS-SUD 11

Stéphane Labbé

Calculs en ferromagnétisme

Dynamique

Une particule

Collaboration Dassault (N. Vukadinovic) et ONERA (F. Boust)

Particule de Permalloy, 98304 degrès de liberté.

Dynamique

Domaine périodique

Collaboration avec S. Faure (Université Paris Sud)

Dynamique

Domaine périodique

Collaboration avec S. Faure (Université Paris Sud)

