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Our aims

@ Showing how/if Discontinuous Galerkin Methods can
manage exact absorbing boundary conditions (hon—local)
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Our aims

@ Showing how/if Discontinuous Galerkin Methods can
manage exact absorbing boundary conditions (hon—local)

@ Showing how well/bad (L)DG can be used in some thermal
scattering problems.

@ Like storks,... flying south during the wintertime.
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THE MODEL PROBLEM
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" non-linear region

Boundary of the
obstacle:

U =3go

Non-linear region:
diva(-,Vu)+f=0
Linear region:
Au+f=0

Interface:

u-=ut+g;
a(-,vu7)-n=3d,ut+g

f with compact support
u=0(1)atoo
... or O(1/r)in 3D.
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Artificial boundary

support of sources
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Hypotheses

@ go € HY?(T)
@ g € HY2(Z), g el?(D)
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Hypotheses

@ go € HY?(Iy)

° g1 eHY2(3), g el?(F)

@ Carathéodory conditions for a(x, §) and D¢a(x, &)
@ Growth conditions for a and Da:

la(x, &) < Cl¢] +D(x), D eL*Q-).

IDea(x, &) < C.

@ Uniform ellipticity for D¢a
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Hypotheses

@ go € HY?(Iy)

° g1 eHY2(3), g el?(F)

@ Carathéodory conditions for a(x, §) and D¢a(x, &)
@ Growth conditions for a and Da:

la(x, &) < Cl¢] +D(x), D eL*Q-).

]DEa(x,g)\ <C.
@ Uniform ellipticity for D¢a
o fclL?(Q)
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Interior (three—field formulation)

u=do, on g

0':0, inQ+
oc=a(-,0), inQ_

OZVU, inQ+
0 =Vu, in Q_

dive +f =0, inQ
dive +f =0, inQ_
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Interior (three—field formulation)

u=do, on g

0':0, inQ+
oc=a(-,0), inQ_

OZVU, inQ+
0 =Vu, in Q_

dive +f =0, inQ
dive +f =0, inQ_

with interface conditions on =

u"=ut+g;, o n=oc"-n+g
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BOUNDARY MATTERS




Fundamental solution

[ —1/(27) log|x — y| —
¢(x,y)— { l/(47T|X—Y|)a 3D
—Au =0, inQex, u(oo) = { gg}r) gg

The constant appears in the two dimensional case.
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Fundamental solution

[ —1/(2x) log|x —y| 2D
Hesy) = { 1/(47 |x —yl), 3D
—Au =0, inQex, u(oo) = { gg}r) gg

Third Green’s Theorem

ou(x) = /r On iy © (%, y)U(Y)ds(y) — /r (X, y)nu(y)ds(y)(+c)

1 X outside
©=¢ 1/2 x onthe boundary
0 X inside

The constant appears in the two dimensional case.
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Exterior points (© = 1)

/ On u(y)ds(y) - /r (X, y)Inu(y)ds(y)

representation formula

But at the boundary (© = 1/2)

%U(X) = fr ju(y)ds(y) - fr¢(X7Y)anU(Y)dS(Y)
= ICu — Vonhu

the Cauchy data are related (= integral equation)

(Forget the additional constant and other conditions; as if we were solving
—Au+u=0)
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An integral identity on I

Voau + (3 —K)u=0 J

NI~
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Dirichlet—to—Neumann Operator (u=<¢on')

Solve:
Vy+(3-K)i=0

... then v = ghu

Bustinza, Gatica & Sayas Coupling of LDG and BEM



Dirichlet—to—Neumann Operator (u=<¢on')

Solve:
Vy+(3-K)i=0

... then v = ghu

@ V is elliptic in H=/2(T") (good for Galerkin!) ... (forget the
problematic constants of the Laplacian, please)
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Dirichlet—to—Neumann Operator (u=<¢on')

Solve:
Vy+(3-K)i=0

... then v = ghu

@ V is elliptic in H=/2(T") (good for Galerkin!) ... (forget the
problematic constants of the Laplacian, please)

@ ¢ appears under the action of an integral operator
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Dirichlet—to—Neumann Operator (u=<¢on')

Solve:
Vy+(3-K)i=0

... then v = ghu

@ V is elliptic in H=/2(T") (good for Galerkin!) ... (forget the
problematic constants of the Laplacian, please)

@ ¢ appears under the action of an integral operator
@ for coupling problems, £ comes all discretized
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What do engineering books say?

See: Beer (01), Gaul, Kogel, Wagner (03). See perhaps: Brebbia &
Dominguez (92)

SQ =
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What do engineering books say?

See: Beer (01), Gaul, Kogel, Wagner (03). See perhaps: Brebbia &
Dominguez (92)

Vﬂy + (%_K:)SO in H1/2(|-) ’
SQ =

Xn(disc) Yp(cont)

Xh \Y 21-K
Y 0 |
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What do engineering books say?

See: Beer (01), Gaul, Kogel, Wagner (03). See perhaps: Brebbia &
Dominguez (92)

Vﬂy + (%_K:)SO in H1/2(|-) ’
SQ =

@ V : Galerkin for elliptic operator

Xn(disc) Yp(cont)

Xh \Y 21-K
Y 0 |
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What do engineering books say?

See: Beer (01), Gaul, Kogel, Wagner (03). See perhaps: Brebbia &
Dominguez (92)

Vﬂy + (%_K:)SO in H1/2(|-) ’
SQ =

@ V : Galerkin for elliptic operator

@ lp = £ rediscretizes data
Xn(disc) Yp(cont)
Xh \Y 21-K
Yh 0 |
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What do engineering books say?

See: Beer (01), Gaul, Kogel, Wagner (03). See perhaps: Brebbia &
Dominguez (92)

Vy + (3-K)p

in HY/2(T
LA (r) ’

@ V : Galerkin for elliptic operator
@ lp = £ rediscretizes data
Xn(disc) Yn(cont) @ The L?(I")—orth. projection onto
Qo H/2(I) has to be stable, which
X b 2l — I8 is the case when it's H(I")
Yh 0 I

stable, as in Crouzeix & Thomée
(87) and related work
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Another option

Xp(disc) Yp(cont)

Xh \Y; 21—-K
Zy,(disc) 0 I

There’s now an inf-sup (discrete BB) condition to be satisfied.
Dual meshes. See: Steinbach (02), Rapun & FJS (06). See also: fluid
mechanics FE literature, finite volume cells
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Neumann—to—Dirichlet (Ohu

v = in H=1/2(I")
Vy + (3-K)¢ = 0, in H/2(r)

New difficulties:
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Neumann—to—Dirichlet (Ohu=XonT)

v = in H=1/2(I")
Vy + (3-K)¢ = 0, in H/2(r)

Zn(disc) (Yp)(cont)

New difficulties:
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Neumann—to—Dirichlet (Ohu=XonT)

in H=1/2(T")

Vy + (3-Kp = 0, in H/2(T")

Zn(disc) (Yp)(cont)
Yh I 0
(Yn) v 21— K

New difficulties:

e } — K is not identity + compact
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Neumann—to—Dirichlet (Ohu=XonT)

v = in H=1/2(I")
Vy + (3-K)¢ = 0, in H/2(r)

Zn(disc) (Yp)(cont)

New difficulties:

e } — K is not identity + compact

@ it's identity + small + compact (known since long ago in
L2(T); see Steinbach & Wendland (01) in H/2(T"))
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Neumann—to—Dirichlet (Ohu=XonT)

v = in H=1/2(I")
Vy + (3-K)¢ = 0, in H/2(r)

Zn(disc) (Yp)(cont)

New difficulties:
e } — K is not identity + compact
@ it's identity + small + compact (known since long ago in
L2(T); see Steinbach & Wendland (01) in H/2(T"))

@ not very helpful when discretizing
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Neumann—to—Dirichlet (Ohu=XonT)

v = in H=1/2(I")
Vy + (3-K)¢ = 0, in H/2(r)

Zn(disc) (Yp)(cont)

New difficulties:

e } — K is not identity + compact
@ it's identity + small + compact (known since long ago in

L2(T); see Steinbach & Wendland (01) in H/2(T"))
@ not very helpful when discretizing
@ and elasticity is out of the question
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What shall we do?

We go back to Green’s 3rd Theorem

0= [ o) )ds(y) — [ o(xy)anu(y)ds(y)
and take the normal derivative
000 = Onge) | Buty O Y)UY)dS(Y)

+30nu( / Inx)P(X,y)Onu(y)ds(y)
=1 —WU+ 30hu — K'dhu
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A new identity/beginning

Wu + (3 +K)ou=0 J
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A new identity/beginning

Wu + (3 +K)ou=0 J

@ Wi is elliptic (hence the sign!) (the constants,please!)
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A new identity/beginning

Wu + (3 +K)ou=0 J

@ Wi is elliptic (hence the sign!) (the constants,please!)

@ We can proceed as before ... still with the problem of
stabilising a discrete identity operator (now in H=1/2(I")...
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A new identity/beginning

Wu + (3 +K)ou=0 J

@ Wi is elliptic (hence the sign!) (the constants,please!)

@ We can proceed as before ... still with the problem of
stabilising a discrete identity operator (now in H=1/2(I")...

@ ... and since we dared to deal with W (hypersingular), why
not using the whole package? (V, W, K, K')
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Two identities...

o

We  + (3+K)y =
2-K)p + Vy =0

Elliptic system, very apt for Galerkin.

See: Costabel (87), Han (90). See also (for 1—equation coupling): Johnson &
Nédélec (80), Brezzi & Johnson (79). See even: Zienkiewicz, Kelly and
Bettess (77)
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Two identities...

o

We  + (3+K)y =
2-K)p + Vy =0

We  + (-3+K)y = -
(3-K)p + Vy = 0

Elliptic system, very apt for Galerkin.

See: Costabel (87), Han (90). See also (for 1—equation coupling): Johnson &
Nédélec (80), Brezzi & Johnson (79). See even: Zienkiewicz, Kelly and
Bettess (77)
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The operator NtD
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The operator NtD

+ (-3 +K)y) = —(\9), W
(1, (3 —K)p) + (w, V) = 0, W

A= (7, p) — @ :=NtD()\)

(A, 1)
[]l1/2,r

M 1/20 = Szp < C[llellijzr + IVll-1/2,r]

Bustinza, Gatica & Sayas Coupling of LDG and BEM



The operator NtD

+ (-3 +K)y) = —(\9), W
(1, (3 —K)p) + (w, V) = 0, W

A= (7, p) — @ :=NtD()\)

(A, 1)
MM = Ssu <C + _
[All=1/2,r 7#p W12 [lelle/z,r + 1Vl =1/2,r]
—(ALNIDA) = —(X9) = We,0) + (=3 + K')v, ¢)

= (We,0) + (V7,7 = CIIAIPyjor
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The discrete operator NtDy,

Yh € HY2(I), Z, ¢ H=Y2(I'). Hence Y, are continuous
elements and Z;, discontinuous ones.

©h € Ynh, "h € Zn

Wen, tn) 4+ (=3 +K)m,¥n) = —(\¥n), Yen € Yh
(bn, (3 — K)en) + {ttns V) = 0, Vin € Zn

A= (Y, ¢n) — @n = NtDR())

A,
A= sup Pl

PYhEYh HwhHl/z,r

lenlle/zr + lmll—1/2,r S (A, —(\,NtDp(N)) = |AJA
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Taking care of constants

In two dimensions...
A=7y¢€ Hgl/z(l'), meaning /FA:O
and
ur = ¢ + k, RS Hé/z(l'), ie. /rgo:O.
To know behaviour at infinity we have to know |- u.

All the preceding results (continuous/discrete) are easily
adapted.
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Why DG?

@ Ask a real expert

@ Complicated geometries where non—regular meshes fit
better.

For LDG, see: Cockburn & Shu (89) and related work. See also: Bustinza &
Gatica (04, 05). See especially: Arnold, Brezzi, Cockburn, Marini (01/02)
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Why DG?

@ Ask a real expert

@ Complicated geometries where non—regular meshes fit
better.

@ Different degrees, simpler refining strategies (hanging
nodes)

For LDG, see: Cockburn & Shu (89) and related work. See also: Bustinza &
Gatica (04, 05). See especially: Arnold, Brezzi, Cockburn, Marini (01/02)
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Why DG?

@ Ask a real expert

@ Complicated geometries where non—regular meshes fit
better.

@ Different degrees, simpler refining strategies (hanging
nodes)

@ Promising parallelization capabilities

For LDG, see: Cockburn & Shu (89) and related work. See also: Bustinza &
Gatica (04, 05). See especially: Arnold, Brezzi, Cockburn, Marini (01/02)

Bustinza, Gatica & Sayas Coupling of LDG and BEM



Why DG?

@ Ask a real expert

@ Complicated geometries where non—regular meshes fit
better.

@ Different degrees, simpler refining strategies (hanging
nodes)

@ Promising parallelization capabilities
@ Possibility of handling non-linearities at an element level.

For LDG, see: Cockburn & Shu (89) and related work. See also: Bustinza &
Gatica (04, 05). See especially: Arnold, Brezzi, Cockburn, Marini (01/02)
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Geometric aspects of DG

@ Separated triangulations of Q_ and Q...
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Geometric aspects of DG

@ Separated triangulations of Q_ and Q...

@ Each one with: shape regular triangles, possible hanging
nodes, (asymptotically) bounded number of neighbours,
(asymp) no slipping interfaces, etc.
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Geometric aspects of DG

@ Separated triangulations of Q_ and Q...

@ Each one with: shape regular triangles, possible hanging
nodes, (asymptotically) bounded number of neighbours,
(asymp) no slipping interfaces, etc.

@ 7, > K — P(K) : polynomial space for scalar fields with
(asymptotically) bounded degree (no h — p here and now)
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Geometric aspects of DG

@ Separated triangulations of Q_ and Q...

@ Each one with: shape regular triangles, possible hanging
nodes, (asymptotically) bounded number of neighbours,
(asymp) no slipping interfaces, etc.

@ 7, > K — P(K) : polynomial space for scalar fields with
(asymptotically) bounded degree (no h — p here and now)

@ P(K): vector polynomials (of same degree as P(K) or one
less), ensuring that VP(K) c P(K).
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Geometric aspects of DG

@ Separated triangulations of Q_ and Q...

@ Each one with: shape regular triangles, possible hanging
nodes, (asymptotically) bounded number of neighbours,
(asymp) no slipping interfaces, etc.

@ 7, > K — P(K) : polynomial space for scalar fields with
(asymptotically) bounded degree (no h — p here and now)

@ P(K): vector polynomials (of same degree as P(K) or one
less), ensuring that VP(K) c P(K).

@ Vj, := [[« P(K) space for scalar unknowns
@ X, =[]« P(K) for vector unknowns: VnVy C X,
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Local form of LDG methods

up € Vh ::HIP’(K), on,Oh € X ::HP(K).
K K

False trace & normal flux on the set of sides: U, &.

a0)=c [ a(.0n¢= [ onc

Vu=20 /Bh-T—{—Uh(dthT):/ G’T'n,
K oK

—dive =f /ah-Vv:/fv+/ o-nv
K K oK

V¢, T € P(K), v e P(K)
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Jumps and averages

&n:=set of sides not on boundaries or interfaces. When
needed, any trace can be understood elementwise.

Averaging operator

[ HYT) - L@, ) HY(T) — L(E
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Jumps and averages

&n:=set of sides not on boundaries or interfaces. When
needed, any trace can be understood elementwise.

Averaging operator

{-}:HYT) — L&, () HY(T) - LAE

YTh) — LA(EM) [u] = uing + upny
YTh) — L2(EM)  [o]l=01-n1+02:1;
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Why the dance of scalars and vectors?

Discrete divergence theorem

/Ovhv-T+/Ovdivh7:/lh([v].{T}+{v}[r])+/ao(vn)r

In particular: if 7 is smooth and compactly supported, this gives
the distributional gradient of a piecewise smooth function.
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Numerical fluxes I; a false trace

Be[[role). Bln IBSL

u: Hl(’Zﬁ) — L2(€h)
X

L2(Fo) 2 do
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@ e interior side: average with convected jump

u={ut+8-[u
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@ e interior side: average with convected jump
u={u}+p-[u

@ e C Iq: Dirichlet datum

<)
Il
«Q
S
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@ e interior side: average with convected jump
u={u}+p-[u
@ e C Iq: Dirichlet datum
u=do

@ e C =_ (interface seen from inside): Dirichlet datum
(U- =uy +01)
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@ e interior side: average with convected jump
u={u}+p-[u
@ e C Iq: Dirichlet datum
u=do

@ e C =_ (interface seen from inside): Dirichlet datum

(U- =uy +01) R
Uu=u;y+0:

@ e C =, (interface seen from outside): Neumann side

u=u
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@ e interior side: average with convected jump
u={u}+p-[u
@ e C Iq: Dirichlet datum
u=do

@ e C =_ (interface seen from inside): Dirichlet datum

(U- =uy +01) R
Uu=u;y+0:

@ e C =, (interface seen from outside): Neumann side

u

u

@ e C I (exterior boundary): Neumann condition

u=u
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Numerical fluxes Il; a false normal flux

ac][Pole)) hawxl
e

HY(Ty) x HY(T,) — L3(&)
X

L%(T'o) 2 go

X

L%(Z) > g

X

L%(Z) > 02

X

L2(F) 5 A

Q)
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@ e interior side: average of fluxes minus convected jump
minus penalization

o ={o}—[o]B -]
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@ e interior side: average of fluxes minus convected jump
minus penalization

o ={o}—[o]B—alu]
@ e C Ig: penalized flux

o

o—a(u—4go)n
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@ e interior side: average of fluxes minus convected jump
minus penalization

o={o}-[o]B—alu]
@ e C Ig: penalized flux
o=0—a(u-go)n
@ e C =_ (Dirichlet view of the interface):

o =o0-—a(ul-gn)
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@ e interior side: average of fluxes minus convected jump
minus penalization

o={o}-[o]B—alu]
@ e C Ig: penalized flux
o=0—a(u-go)n
@ e C =_ (Dirichlet view of the interface):
=0 —a(u]-gn)
@ e C =, (Neumannview): (c_-n =04+ -n+Qp)

0 =0_+0z2n+a(u] —gin)
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@ e interior side: average of fluxes minus convected jump
minus penalization

o={o}-[o]B—alu]

@ e C Ig: penalized flux
o=0—a(u-go)n

@ e C =_ (Dirichlet view of the interface):

=0 —a(u]-gn)
@ e C =, (Neumannview): (c_-n =04+ -n+Qp)

oc=o0_+0n+a([u—gin)

@ e C I (exterior boundary): Neumann condition

o=\n
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Once again... the equations

Jxal-6n)-¢ = Jyon-¢ I =0
Uh(dthT) _
J On-T ] —i—{ —KIBKGT‘H } =0
. V N
{ ngo-ah'ﬂow'nV } + Jok Tpen NV = Jxfv

@ Misleadingly mixed—looking problem! What counts here is
ellipticity.
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Once again... the equations

Jxal-6n)-¢ = Jyon-¢ I =0
Uh(dthT) _
J On-T ] —i—{ —KIBKGT‘H } =0
. V N
{ ngo-ah'ﬂow'nV } + Jok Tpen NV = Jxfv

@ Misleadingly mixed—looking problem! What counts here is
ellipticity.

@ Fluxes are the interelement connections and include
information on BC.
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Correcting the piecewise gradient

Vhu := Vhu — Sp(u) J
Sh(u
[snw-m = [1ul-(tra} = i)
+/r0u(rh-n)+/z[u](fg-n), v € En
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Solving and substituting

@ The second group of equations states that
O, = V;Uh + Oh

where g,, takes care of go and g;.
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Solving and substituting

@ The second group of equations states that
O, = V;Uh + Oh

where g,, takes care of go and g;.
@ The first one asserts that

/ﬂwW%+%W%=/0w%
Q Q

(true in particular for ¢, = Vivy).
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Solving and substituting

@ The second group of equations states that
O, = V;Uh + Oh

where g,, takes care of go and g;.
@ The first one asserts that

/ﬂwW%+%W%=/0w%
Q Q

(true in particular for ¢, = Vivy).
@ Finally, the third block says

/ah-v;ﬁvtha(uh,vh):/ vh+/fvh+B&Tterms
Q r Q

where

a(u,v):/Iha[u]-[V]+/roauv+/:a[u][v]
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The so—called primal formulation

The LDG equations are equivalent to...

/a(-,v;uh+gh)-v;vh+a(uh,vh) - /vh+/fvh
Q r Q
+B & T terms

Bo(u.v) = [ A, Viu-+gp)- Viv + a(u.v)

We have (almost inadvertently) introduced a consistency error.
Written as they are now, u does not satisfy the discrete
eqguations.
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Basic solvability and stability analysis

2 2 . 2
Vvl < Vavliga +alv,v) = |IVIi

The term «(v, v) penalizes discontinuities, but has some strange terms
penalising that v doesn't satisfy the homog Dirichlet condition on I'p and =_

Theorem

[Bh(u,v) = Br(u*,v)[ S lu —u*[ln V]I
Bn(u,u —Vv) —Bh(v,u —v) 2 [ju— v
This implies unique solvability of
Un € Vh  B(Un,Vh) = th(Vn), Yvh € Vy

and

B(O,v lh(v,
Junlly < sup BV o n(vn)l
Ivalh

ol




In our case, the bound includes the following terms:

Q

+ / algo + / algy? / algal?
Mo =

+ [ laCop

ruvhmh'/

+ sup
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CONNECTING BOTH SIDES




Two NtD solvers on opposite sides of I

A LDG(i():Iata) (Uh, 6, O'h) — uponrl

I H
BEM(x

A — (en,m)  — en(+Fo)

unh|r and ¢y are not even in the same space
(one is discontinuous, the other one is continuous)
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Discretization accomplished

New space: Xp C L2(I).
Fin A\n € X9, compute

LDG(,;data)

Xr?E)\h — (uh,Oh,a'h) — uponrl
I H
BEM(
Ah 0w (ensm)  — on(+Po)
and impose

/F(SOh —up)éh =0, V& eXxP.
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Very quickly, some comments

@ There are three independent grids:

(Un, Oh, oh) An (¢h,7h)
LDG grid mortar grid BEM grid
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Very quickly, some comments

@ There are three independent grids:

(Un, Oh, oh) An (¢h,7h)
LDG grid mortar grid BEM grid

@ The grids are independent up to a point (i.e., they are not!).
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Very quickly, some comments

@ There are three independent grids:

(Un, Oh, oh) An (¢h,7h)
LDG grid mortar grid BEM grid

@ The grids are independent up to a point (i.e., they are not!).
@ The mortar space should not be too rich
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Very quickly, some comments

@ There are three independent grids:

(Un, Oh, oh) An (¢h,7h)
LDG grid mortar grid BEM grid

@ The grids are independent up to a point (i.e., they are not!).
@ The mortar space should not be too rich

@ The mortar grid sees the other two, which are mutually
invisible (see later).
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Very quickly, some comments

@ There are three independent grids:

(Un, Oh, oh) An (¢h,7h)
LDG grid mortar grid BEM grid

@ The grids are independent up to a point (i.e., they are not!).
@ The mortar space should not be too rich

@ The mortar grid sees the other two, which are mutually
invisible (see later).

@ We can treat the implicit system
[ (NOE )~ NDEF ) 6 =0, Ve € X
-

and try to solve it...
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...or unfold the system to obtain...

LDGEQqns(6y, o, up) _Tr/])\h = data
Thun —R{¢n =
RhA\n  +BEM_Eqns(¢n,vn) =0

Th:= mass matrix/operator trace(Vp) x X0
Rn:= mass matrix/operator X2 x Y?

... and then think of iterations.
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An idea for analysis

Compact form of the system

Find up € Vi, Ap € X2, s.t.

Bh(uh,vh) = fr Ah Vh =data, Vv, € Vy
Jrunén  +(=NtDn(Xn), &) =0, Vén € X0

The whole discrete operator is uniformly strongly monotone
with respect to the norm (assuming it is a norm!)

llulln =+ [Aln

but uniform Lipschitz continuity requires new norms:

| MW= | @M or
new |
- 0" =1l - In +enll - llor
where [[énllor Senlénln, Yén € Xp.
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The theoretical frame is...

nth adaptation of Céa—Strang estimates

Ch(pn,an) = %n(an), Vah
Ch(p,p —q) — Cn(g,p — ) = |Ip — a2

Cn(p, ) = Ca(P™ )| < 1P — P* I8 llalIn
We have unique solvability and the estimate
. Ch(p,rh) — 4n(r
I Pl inf [p — Gl + sup =P )

With patience and a good hammer, we can make everything fit
in our case. Some terms are delicate to bound.
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The last idea...

Since A, ¢,y are piecewise very smooth, can we take Xy, Yn, Zn
very small?

Then we can reduce the system to
LDG_EQqns(6p, on, up) — T/,(RANtDRRy) 1 Thup = data

T/ (R, NtDp Rp) 1T, ~ ABC restricted to the trace space of V,.
It'd be nice if we could have a smooth spherical/circular
boundary and use spectral elements. But then you create two
new problems: (a) You need isoparametric LDG. (b) You have
to trick with the traces.

... as in Lenoir (95), Rapun & FJS (to appear)

New variational crime
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Blaming MC (after scattering)
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Blaming MC (after scattering)

Coincidence?... | don’t think so!
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And in a serious mood...

A Michel Crouzeix,

Bustinza, Gatica & Sayas Coupling of LDG and BEM



And in a serious mood...

A Michel Crouzeix,
@ avec admiration!
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And in a serious mood...

A Michel Crouzeix,
@ avec admiration!
@ plus d’admiration!!
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And in a serious mood...

A Michel Crouzeix,
@ avec admiration!
@ plus d’admiration!!
@ et encore plus d’admiration!!!
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