Modélisation numérique d'écoulements en milieu poreux fracturés

Philippe ANGOT, Franck BOYER et Florence HUBERT

L.A.T.P. - Marseille

Canum 2006

- **2** LE MODÈLE ASYMPTOTIQUE LE LONG DE LA FRACTURE
- **3** LES SCHÉMAS VOLUMES FINIS
- **4** RÉSULTATS NUMÉRIQUES
 - 5 PERSPECTIVES

1 INTRODUCTION

2 Le modèle asymptotique le long de la fracture

3 Les schémas volumes finis

4 Résultats numériques

5 Perspectives

Introduction

INTRODUCTION.

Configuration pour un modèle "double-permeabilité" avec $b_f \ll 1$.

- La fracture est polygonale et totalement immergée dans la matrice poreuse.
- La matrice de permeabilité dans la fracture est anisotrope :

$$\mathbf{K}_{f} = \begin{bmatrix} \mathbf{K}_{f, au} & \mathbf{K}_{f, d} \ \mathbf{K}_{f, d} & \mathbf{K}_{f, n} \end{bmatrix}.$$

- Résolution par des schémas VF du problème de Darcy global sur $\Omega \cup \Omega_f$ sur des maillages raffinés.
- Résolution par des schémas VF d'un problème asymptotique sur $\Omega \cup \Sigma$.
- Etude de la convergence des deux schémas.
- ► Validation "numérique" du modèle asymptotique.
 - ► Influence de la variation de l'épaisseur de la fracture.
 - Comportement en limite de validité du modèle asymptotique.

2 LE MODÈLE ASYMPTOTIQUE LE LONG DE LA FRACTURE

3 Les schémas volumes finis

4 Résultats numériques

5 Perspectives

CAS D'UNE FRACTURE RECTILIGNE.

Modèle de Darcy dans la matrice poreuse :

 $\nabla \cdot \mathbf{u} = h \quad \text{dans } \Omega$ $\mathbf{u} = -\frac{1}{\mu} \mathbf{K} \cdot (\nabla p - \rho \mathbf{g}) \quad \text{dans } \Omega$ $p = P_D \quad \text{sur } \Gamma_D$ $\mathbf{u} \cdot \mathbf{n} = \kappa (p - P_\infty) + V \quad \text{sur } \Gamma_N$

Le modèle asymptotique le long de la fracture

CAS D'UNE FRACTURE RECTILIGNE.

Notations

- La fracture : $\Omega_f = \Sigma \times [-\frac{b_f}{2}, \frac{b_f}{2}]$ avec $b_f \ll 1$.
- Les coordonnées curvilignes sur Σ : $(\boldsymbol{\tau}, \boldsymbol{n}).$
- Pour ψ dans H¹(Ω), ψ⁺, ψ⁻ sont les traces de ψ de part et d'autre de Σ (orientée par n).
- $\overline{\psi}|_{\Sigma} = (\psi^+ + \psi^-)/2$ et $\llbracket \psi \rrbracket_{\Sigma} = (\psi^+ \psi^-)$ sur Σ
- $\nabla_{\tau}, \nabla_{\tau} \cdot$: le gradient tangentiel et la divergence le long de Σ .

Les quantités moyennées le long de Σ

$$\mathbf{u}_{f,\tau} = \frac{1}{b_f} \int_{-\frac{b_f}{2}}^{\frac{b_f}{2}} \mathbf{u} \cdot \tau \, dt, \ \mathbf{u}_{f,n} = \frac{1}{b_f} \int_{-\frac{b_f}{2}}^{\frac{b_f}{2}} \mathbf{u} \cdot \mathbf{n} \, dt$$
$$p_f = \frac{1}{b_f} \int_{-\frac{b_f}{2}}^{\frac{b_f}{2}} p \, dt, \ h_f = \frac{1}{b_f} \int_{-\frac{b_f}{2}}^{\frac{b_f}{2}} h \, dt.$$

Le modèle asymptotique le long de la fracture

LE CAS D'UNE PERMÉABILITÉ DIAGONALE

$$\begin{aligned} b_{f} \nabla_{\tau} \cdot \overline{\mathbf{u} \cdot \tau} |_{\Sigma} &= b_{f} h_{f} - \llbracket \mathbf{u} \cdot \mathbf{n} \rrbracket_{\Sigma} & \text{ on } \Sigma \\ \overline{\mathbf{u} \cdot \tau} |_{\Sigma} &= -\frac{\mathbf{K}_{f,\tau}}{\mu_{f}} \left(\nabla_{\tau} \rho_{f} - \rho_{f} \, \mathbf{g} \cdot \tau \right) & \text{ on } \Sigma \\ \overline{\mathbf{u} \cdot \mathbf{n}} |_{\Sigma} &= -\frac{\mathbf{K}_{f,n}}{\mu_{f}} \left(\frac{\llbracket \rho \rrbracket_{\Sigma}}{b_{f}} - \rho_{f} \, \mathbf{g} \cdot \mathbf{n} \right) & \text{ on } \Sigma \\ \rho_{f} &= \overline{\rho} |_{\Sigma} + (2\xi - 1) \left(\frac{b_{f} \mu_{f}}{4\mathbf{K}_{f,n}} \llbracket \mathbf{u} \cdot \mathbf{n} \rrbracket_{\Sigma} \right), \, \xi \geq \frac{1}{2} & \text{ on } \Sigma. \end{aligned}$$

• Fractures non immergées

- Jaffré & al. (02),(05) Cas $\xi > \frac{1}{2}$, typiquement $\xi = \frac{3}{4}$ ou 1.
- Faille & al (02) Cas $\xi = \frac{3}{4}$.

Fractures totalement immergées

- Angot (03) Cas d'un gradient de pression constant, $\xi = \frac{1}{2}$.
- Angot (98) or Angot & al (99) Cas de fractures imperméables avec [[**u** · **n**]]_Σ = 0, ξ = ¹/₂.
- Bogdanov & al (03) Cas $\xi = \frac{3}{4}$.

Le modèle asymptotique le long de la fracture DÉRIVATION DU MODÈLE

► On intégre la loi de darcy le long des sections transversales de la fracture.

▶ On utilise des quadratures pour approcher les quantités moyennes.

• Cas $\xi = 1/2$. On utilise la méthode des trapèzes

$$p_f \simeq \overline{p}|_{\Sigma}, \quad \overline{\mathbf{u} \cdot \mathbf{n}}|_{\Sigma} = -\frac{1}{\mu_f} \mathbf{K}_f \left(\nabla_{\Sigma} p_f - \rho_f \mathbf{g} \right) \cdot \mathbf{n}$$

• Cas $\xi = 3/4$. On utilise la méthode des trapèzes sur chaque moitié de fractures

$$p_{f} \cong p(\mathbf{0}), \quad \mathbf{u} \cdot \mathbf{n}(\mathbf{0}) \cong \mathbf{u} \cdot \mathbf{n}|_{\Sigma}$$

$$\Downarrow$$

$$\psi$$

$$p_{f} = \overline{p}|_{\Sigma} + \frac{1}{2} \left(\frac{b_{f}\mu_{f}}{4\mathbf{K}_{f,n}} \llbracket \mathbf{u} \cdot \mathbf{n} \rrbracket_{\Sigma} \right), \quad \overline{\mathbf{u} \cdot \mathbf{n}}|_{\Sigma} = -\frac{1}{\mu_{f}} \mathbf{K}_{f} \left(\nabla_{\Sigma} p_{f} - \rho_{f} \mathbf{g} \right) \cdot \mathbf{n}$$

 $\mathbf{p}_{1} \sim \mathbf{p}(\mathbf{0})$ $\mathbf{u}_{1} = \mathbf{p}(\mathbf{0}) \sim \overline{\mathbf{u}_{1}} = \mathbf{p}(\mathbf{0})$

CAS GÉNÉRAL

$$\nabla_{\tau} \cdot (b_{f}(s)\overline{\mathbf{u} \cdot \tau}|_{\Sigma}) = b_{f}(s)h_{f} - \llbracket \mathbf{u} \cdot \mathbf{n} \rrbracket_{\Sigma}$$
$$\begin{bmatrix} \overline{\mathbf{u} \cdot \tau}|_{\Sigma} \\ \overline{\mathbf{u} \cdot \mathbf{n}}|_{\Sigma} \end{bmatrix} = -\frac{1}{\mu_{f}}\mathbf{K}_{f} \cdot (\nabla_{\Sigma}\rho_{f} - \rho_{f}\mathbf{g})$$
$$\rho_{f} = \overline{\rho}|_{\Sigma} + (2\xi - 1)\left(\frac{b_{f}\mu_{f}}{4\mathbf{K}_{f,n}}\llbracket \mathbf{u} \cdot \mathbf{n} \rrbracket_{\Sigma} + C\frac{b_{f}\mathbf{K}_{f,d}}{\mathbf{K}_{f,n}}\nabla_{\tau}\llbracket \rho \rrbracket_{\Sigma}\right)$$
avec
$$\nabla_{\Sigma}\rho_{f} = \begin{bmatrix} \nabla_{\tau}\rho_{f} \\ \underline{\llbracket}\rho \rrbracket_{\Sigma} \\ b_{f} \end{bmatrix}, \quad \xi \ge \frac{1}{2}.$$

Conditions aux limite de Neumann homogène sur $\partial \Sigma$: $\mathbf{u} \cdot \boldsymbol{\tau}|_{\Sigma} = \mathbf{0}$.

<u>Remarque</u>: Le modèle asymptotique est bien posé pour $\xi = \frac{1}{2}$ pour toute **K**_f et pour $\xi > \frac{1}{2}$ si **K**_{f,d} = 0.

Introduction

Le modèle asymptotique le long de la fracture

3 Les schémas volumes finis

4 Résultats numériques

Perspectives

LE MODÈLE DARCY-DARCY GLOBAL

On utilise un schéma volumes finis de type DDFV qui permet de gérer

- l'anisotropie de la perméabilité.
- les fortes discontinuités de la perméabilité.

 \Rightarrow Le schéma converge et on a des estimations d'erreur en O(h)Voir Boyer-Hubert (06).

LE MODÈLE ASYMPTOTIQUE

On utilise les notations et les hypothèses classiques pour les schémas volumes finis cells-centered sur maillage admissible. Voir EGH (00).

Maillage T *conforme* à *l'interface* $\Sigma : \sigma = \kappa | \mathcal{L} \subset \Sigma$.

- Inconnues en pression p_{κ} pour tout $\kappa \in T$
- Inconnues auxiliaires $(p_{\sigma}, p_{\sigma, \mathcal{K}}, p_{\sigma, \mathcal{L}})$ sur $\sigma = \mathcal{K} | \mathcal{L} \in \mathcal{E}_{\Sigma}$
- Les arêtes sur Σ : $\sigma_1, \cdots, \sigma_N$.

Le schéma "asymptotique" dans la matrice poreuse Ω (I).

$$\sum_{\sigma\subset\partial\mathcal{K}}\boldsymbol{m}(\sigma)\boldsymbol{F}_{\kappa,\sigma}=\boldsymbol{m}(\kappa)\boldsymbol{h}_{\kappa},\qquad\forall\kappa\in\mathcal{T},$$

où pour tout $\kappa \in \mathcal{T}$:

$$F_{\kappa,\sigma} = \begin{cases} \frac{\mathbf{K}}{\mu} \left(\frac{\mathbf{p}_{\kappa} - \mathbf{p}_{\sigma,\kappa}}{\mathbf{d}_{\kappa,\sigma}} + \rho_{\kappa} \, \mathbf{g} \cdot \mathbf{n}_{\kappa|\mathcal{L}} \right) & \text{si } \sigma = \kappa | \mathcal{L}, \\ 0 & \text{si } \sigma \in \mathcal{E}_{\text{ext}}^{N}, \\ \frac{\mathbf{K}}{\mu} \left(\frac{\mathbf{p}_{\kappa} - \mathbf{P}_{\mathbf{D},\sigma}}{\mathbf{d}_{\kappa,\sigma}} + \rho_{\kappa} \, \mathbf{g} \cdot \mathbf{n}_{\kappa|\mathcal{L}} \right) & \text{si } \sigma \in \mathcal{E}_{\text{ext}}^{D}. \end{cases}$$

Le schéma "asymptotique" dans la matrice poreuse Ω (II).

Les inconnues auxilliaires d'interface $p_{\sigma,\kappa}$, $p_{\sigma,\mathcal{L}}$ sont classiquement éliminées en dehors de Σ :

$$F_{\kappa,\sigma} = -F_{\mathcal{L},\sigma}, \quad \text{et} \quad p_{\sigma,\kappa} = p_{\sigma,\mathcal{L}}, \qquad \text{si } \sigma = \kappa | \mathcal{L} \in \mathcal{E}_{int}.$$

$$\Downarrow$$

$$F_{\kappa,\sigma} = \frac{\mathbf{K}}{\mu} \left(\frac{p_{\kappa} - p_{\mathcal{L}}}{d_{\kappa\mathcal{L}}} + \left(\frac{d_{\kappa,\sigma}}{d_{\kappa\mathcal{L}}} \rho_{\kappa} + \frac{d_{\mathcal{L},\sigma}}{d_{\kappa\mathcal{L}}} \rho_{\mathcal{L}} \right) \mathbf{g} \cdot \mathbf{n}_{\mathcal{K}|\mathcal{L}} \right)$$

Le schéma l'asymptotique" long de Σ

Pour toute arête $\sigma_i = \kappa | \mathcal{L} \subset \Sigma$

$$-\nabla_{\tau} \cdot \left(b_f \frac{\mathbf{K}_{f,\tau}}{\mu_f} \nabla_{\tau} p_f \right) = b_f h_f - \llbracket \mathbf{u} \cdot \mathbf{n} \rrbracket_{\Sigma}$$

$$\Downarrow$$

$$-\frac{\mathbf{K}_{f,\tau}}{\mu_{f}}\left(b_{f,i+\frac{1}{2}}\frac{p_{\sigma_{i+1}}-p_{\sigma_{i}}}{m_{i+\frac{1}{2}}}-b_{f,i-\frac{1}{2}}\frac{p_{\sigma_{i}}-p_{\sigma_{i-1}}}{m_{i-\frac{1}{2}}}\right)=m_{i}b_{f,i}h_{f,i}+m_{i}\left(F_{\kappa,\sigma_{i}}+F_{\mathcal{L},\sigma_{i}}\right)$$

Les schémas volumes finis LE SCHÉMA "ASYMPTOTIQUE" LE LONG DE Σ .

Conditions de transmission sur Σ .

Pour tout $\sigma = \kappa | \mathcal{L} \in \mathcal{E}_{\Sigma}$:

$$\mathbf{\overline{u} \cdot \overline{n}}|_{\Sigma} = -\frac{1}{\mu_{f}} \mathbf{K}_{f,n} \left(\frac{\llbracket \rho \rrbracket_{\Sigma}}{b_{f}} - \rho_{f} \mathbf{g} \cdot \mathbf{n} \right)$$
$$p_{f} = \overline{\rho}|_{\Sigma} + (2\xi - 1) \frac{b_{f} \mu_{f}}{4 \mathbf{K}_{f,n}} \llbracket \mathbf{u} \cdot \mathbf{n} \rrbracket_{\Sigma}$$
$$\Downarrow$$

•
$$\frac{1}{2}(F_{\kappa,\sigma}-F_{\mathcal{L},\sigma})=\frac{\mathbf{K}_{f,n}}{\mu_f b_f}(\rho_{\sigma,\kappa}-\rho_{\sigma,\mathcal{L}})+\frac{\mathbf{K}_{f,n}}{\mu_f}\rho_f \mathbf{g}\cdot\mathbf{n}_{\kappa|\mathcal{L}}$$

•
$$p_{\sigma} = \frac{1}{2}(p_{\sigma,\kappa} + p_{\sigma,\mathcal{L}}) - \frac{(2\xi - 1)b_{f}\mu_{f}}{4\mathbf{K}_{f,n}}(F_{\kappa,\sigma} + F_{\mathcal{L},\sigma}).$$

CONVERGENCE DU SCHÉMA POUR LE MODÈLE ASYMPTOTIQUE

▶ Pour $\xi = \frac{1}{2}$, le schéma converge.

La démonstration repose sur

- Des inégalités de traces discrètes.
- Des propriétés de compacité de la famille p^{T} .

Introduction

Le modèle asymptotique le long de la fracture

3 Les schémas volumes finis

4 RÉSULTATS NUMÉRIQUES

Perspectives

COMPARAISON ENTRE LES MODÈLES ASYMPTOTIQUE ET GLOBAL.

Demi-fracture verticale à épaisseur constante :

 $\begin{array}{c|c} \textit{Fracture perméable} \\ b_f = 0.01, \, \textbf{K}_{f,\tau} = 10^6, \, \textbf{K}_{f,n} = 100 \\ \hline \text{Modèle asymptotique} \\ \text{maillage rectangulaire} \\ 16000 \text{ mailles} \\ \end{array} \begin{array}{c} \text{Modèle global} \\ \text{maillage triangulaire} \\ 100000 \text{ mailles} \\ \end{array}$

COMPARAISON ENTRE LES MODÈLES ASYMPTOTIQUE ET GLOBAL.

Demi-fracture verticale à épaisseur constante :

 $\begin{array}{c|c} \textit{Fracture imperméable} \\ b_f = 0.01, \, \textbf{K}_{f,\tau} = 0, \, \textbf{K}_{f,n} = 10^{-7} \\ \hline \textbf{Modèle asymptotique} \\ maillage rectangulaire \\ 16000 mailles \\ \hline \textbf{Modèle global} \\ maillage triangulaire \\ 100000 mailles \\ \hline \textbf{Modèle global} \\$

COMPARAISON ENTRE LES MODÈLES ASYMPTOTIQUE ET GLOBAL.

Demi-fracture verticale à épaisseur constante :

Fracture avec des propriétés intermédiaires $b_f = 0.01, \mathbf{K}_{f,\tau} = 100, \mathbf{K}_{f,n} = 100$

modèle asymptotique maillage rectangulaire 16000 mailles modèle global maillage triangulaire 24000 mailles

INFLUENCE DU PARAMÈTRE DE QUADRATURE ξ

- Dans les exemples précédents : aucune différence (< 0.01%)
- Fracture avec des propriétés intermédiaires
 ⇒ différence de l'ordre de 10%.

$$\mathbf{K}_{f,\tau} = 100, \, \mathbf{K}_{f,n} = 10^{-4}, \, b_f = 0.01$$

INFLUENCE DU PARAMÈTRE ξ

Fracture avec des propriétés intermédiaires

$$\mathbf{K}_{f,\tau} = 100, \, \mathbf{K}_{f,n} = 10^{-4}, \, b_f = 0.01$$

Modéle asymptotique | Modèle global $\xi = 0.5$

EPAISSEUR VARIABLE

Solution du modèle global

Fracture avec des propriétés intermédiaires b_f moyen = 0.01, $\mathbf{K}_{f,\tau} = 100$, $\mathbf{K}_{f,n} = 100$

Fracture droite verticale maillage triangulaire 100000 mailles Fracture conique verticale maillage triangulaire 100000 mailles

EPAISSEUR VARIABLE

Fracture verticale conique :

Fracture avec des propriétés intermédiaires b_f moyen = 0.01, $\mathbf{K}_{f,\tau} = 100$, $\mathbf{K}_{f,n} = 100$

Modèle asymptotique maillage rectangulaire 16000 mailles Modèle global maillage triangulaire 100000 mailles

COMPARAISON AVEC DES SOLUTIONS ANALYTIQUES

Le cas de la lentille Voir Adler & al (06).

• On est en limite de validité du modèle asymptotique

 b_f moyen \sim 0.06.

• L'épaisseur s'annule aux extrémités de la fracture ($b_f = 0$).

COMPARAISON AVEC DES SOLUTIONS ANALYTIQUES

Le cas de la lentille Voir Adler & al (06). Comportement au voisinage d'un coin de la lentille

Solution analytique | Modèle global | Modèle asymptotique

Introduction

2) Le modèle asymptotique le long de la fracture

3 Les schémas volumes finis

4 Résultats numériques

5 PERSPECTIVES

PERSPECTIVES...

- Couplage avec le transport solutal
- Dérivation de modèles asymptotiques pour des modèles "Stokes -Darcy"