Remaillage local anisotrope en 3d et applications

Cécile Dobrzynski

GCE - Université Catholique de Louvain LJLL - Université Paris VI

en collaboration avec P. Frey

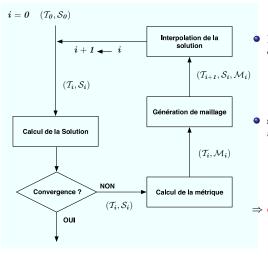
CANUM 2006

Introduction: Position du problème

- Phénomène concentré dans une petite région : maillage uniforme ⇒ maillage de taille importante.
- Anisotropie naturelle des phénomènes : ondes de chocs, couches limites...
 - \Rightarrow maillages anisotropes.

Adaptation de maillage anisotrope : contrôler l'erreur d'approximation tout en ayant un nombre de points minimals pour le maillage.

Adaptation de maillages



Estimateur d'erreur de l'erreur d'interpolation :

$$\left\| \frac{u - \Pi_h u}{u} \right\|_{\infty, K} \le c \max_{\vec{e} \in E_K} \left\langle \vec{e}, \frac{\mathcal{M}(K)}{u} \ \vec{e} \right\rangle,$$

• soit ε un seuil d'erreur, chaque arête e doit vérifier l'égalité :

$$\varepsilon = c \langle \vec{e}, \mathcal{M}(K)\vec{e} \rangle, \forall e \in E_K$$
$$\Rightarrow \langle \vec{e}, | \widetilde{\mathcal{M}}(K) | \vec{e} \rangle = 1$$

⇒ construction d'un maillage *unité*.

Génération de maillage 3d

raffinement/déraffinement

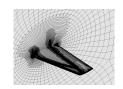
[R. Biswas, Y. Kallinderis,R. Löhner, D.J. Mavriplis,R.D. Rausch, M.S. Shephard]

remaillage local

[T. Coupez, C.C. Pain, X. Li, A. Tam, CD-PF]

remaillage global

- méthodes frontales [R. Löhner, J. Peraire]
- octree modifié [M.S. Shephard]
- méthodes de Delaunay [T. Baker, P-L. George]



Génération de maillage 3d : modifications locales

Avantages pour l'adaptation :

- maillage toujours valide,
- 2 un seul maillage en mémoire,
- 3 le nombre de modifications décroît à mesure que le nombre d'adaptations augmente (cas stationnaire),
- 4 traitement des problèmes à frontières mobiles.

Algorithme d'optimisation basé sur :

- 1 'analyse des longueurs (insertion, suppression),
- 2 la qualité des éléments (bascules, bougés).

ullet $\mathcal T$ est un maillage de Delaunay ssi

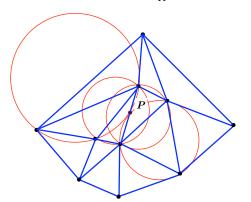
$$\forall (K, K') \in \mathcal{T}, K = adj(K')$$

$$\mathcal{B}(K) \cap \mathcal{V}(K') = \emptyset$$

• mesure de Delaunay et cavité :

$$\alpha(K,P) = \frac{d(P,O_K)}{r_K}$$

$$K \in \mathcal{C}_P \text{ ssi } \alpha(K, P) \leq 1.$$



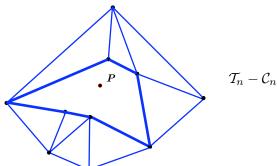
Triangulation \mathcal{T}_n

ullet $\mathcal T$ est un maillage de Delaunay ssi

$$\forall (K, K') \in \mathcal{T}, K = adj(K')$$
 $\mathcal{B}(K) \cap \mathcal{V}(K') = \emptyset$

• mesure de Delaunay et cavité :

$$\alpha(K, P) = \frac{d(P, O_K)}{r_K}$$
 $K \in \mathcal{C}_P \text{ ssi } \alpha(K, P) \leq 1.$

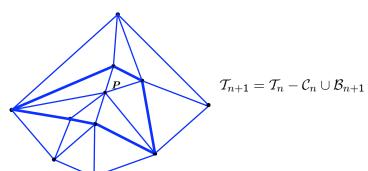


ullet $\mathcal T$ est un maillage de Delaunay ssi

$$\forall (K, K') \in \mathcal{T}, K = adj(K')$$
 $\mathcal{B}(K) \cap \mathcal{V}(K') = \emptyset$

• mesure de Delaunay et cavité :

$$\alpha(K, P) = \frac{d(P, O_K)}{r_K}$$
 $K \in \mathcal{C}_P \text{ ssi } \alpha(K, P) \leq 1.$



 \bullet ${\mathcal T}$ est un maillage de Delaunay ssi

$$\forall (K, K') \in \mathcal{T}, K = adj(K')$$
 $\mathcal{B}(K) \cap \mathcal{V}(K') = \emptyset$

• mesure de Delaunay et cavité :

$$\alpha(K, P) = \frac{d(P, O_K)}{r_K}$$
 $K \in \mathcal{C}_P \text{ ssi } \alpha(K, P) \leq 1.$

• extension de la cavité au cas anisotrope :

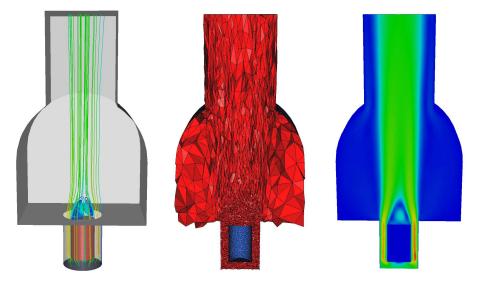
$$\alpha(K,P)_{\mathcal{M}} = \frac{\ell_{\mathcal{M}}(P,O_K)}{r_K}.$$

Novau de Delaunay : cas anisotrope

- On utilise le même algorithme que dans le cas classique.
- Il y a plusieurs façons de définir la cavité :

 - **1** $\alpha(K, P)_{\mathcal{M}(P)} \leq 1$, **2** $\alpha(K, P)_{\mathcal{M}(P)} + \sum_{i=1}^{4} \alpha(K, P)_{\mathcal{M}(P_i)} \leq 5$, **3** $\alpha(K, P)_{\mathcal{M}(P)} + \sum_{i=1}^{4} \omega_i \alpha(K, P)_{\mathcal{M}(P_i)} \leq 1 + \sum_{i=1}^{4} \omega_i$.
- Etoilement de la cavité + connexité :
 - ⇒ procédure de correction de la cavité.

Refroidissement de déchets nucléaires



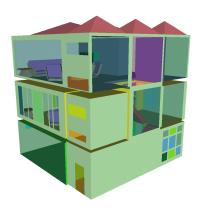
Adaptation de maillage anisotrope utilisant des modifications locales (31e adaptation).

Refroidissement de déchets nucléaires : caractéristiques

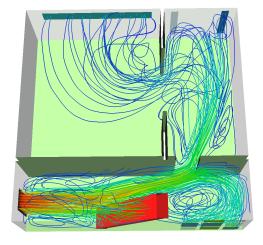
mesure de qualité:

$$Q_K = \beta \frac{\left(\sum_{1 \le i < j \le 6} {}^t \overrightarrow{P_i} \overrightarrow{P_j} \mathcal{M}_{moy} \overrightarrow{P_i} \overrightarrow{P_j}\right)^3}{\sqrt{Det(\mathcal{M}_{moy})} V_K}, \qquad Q_K \in [1, +\infty[$$

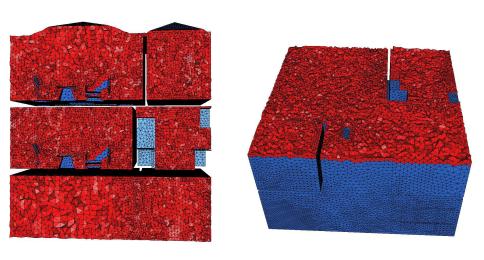
	Maillage initial	Maillage adapté
nb de points	54 183	41 566
nb de tetras	293 862	229 150
ratio aniso prescrits : max		17
ratio aniso obtenus : max		16
ind. eff.		0,8438
$0.71 < \ell < 1.41$		85%
Q < 3		98,77%
Q moy		1,60
temps maillage		4 min sur 1 proc.
temps solveurs	4 □	4 h sur 5 proc.



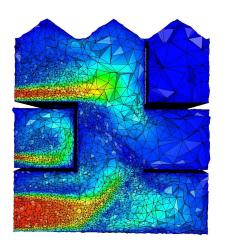
Simulation de climatisation dans une maison meublée : géométrie.

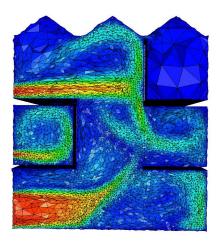


Simulation de climatisation dans une maison meublée : lignes de courant de l'écoulement.



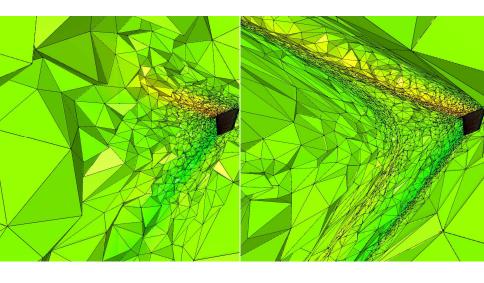
Simulation de climatisation dans une maison meublée : maillage initial.





Simulation de climatisation dans une maison meublée : coupe volumique au temps t=2 et t=26 sec.

Aile AGARD en régime supersonique



Coupes volumiques associées au nombre de Mach (itérations 1 et 10).

Application au mouvement de corps rigides

Données: déplacement v_0 prescrit en tout point d'une frontière Γ_m ,

Prescription du déplacement : résolution d'un problème d'élasticité dans le domaine Ω :

$$\begin{cases} \lambda \Delta v + \mu \nabla (\nabla . v) &= 0 & \operatorname{dans} \Omega \\ v &= v_0 & \operatorname{sur} \Gamma_m \\ v &= 0 & \operatorname{sur} \Gamma_f \end{cases}$$

avec λ et μ les coefficients de Lamé,

Résolution de ce problème avec FreeFem3d : éléments finis P^1 , GC, préconditionneur : Choleski,

Mouvement du maillage : utilisation de modifications locales.

Exemple de mouvements de corps rigides

particule 1:
$$0, 6 \times \sin(\frac{k\pi}{20})$$

particule 2: $0, 5 \times \sin(\frac{(k-19)\pi}{25})$

initial	75e bougé
11 559	$11 \ 559$
60 335	59 897
100%	99,83%
1,44	1,58
4,46	5,05
	34,55 s
	25 s
	11 559 60 335 100% 1,44