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In this talk I shall discuss some recent work concerning representation formulas for perturbations in
the electromagnetic fields caused by low volume fraction inhomogeneities, and the practical use of these
formulas for the purpose of identifying and “reconstructing” the inhomogeneities from relatively few
boundary field measurements. In the simplest case we consider a conducting object that occupies a
bounded, smooth domain Ω ⊂ IRm. γ0(·) denotes the smooth background conductivity, that is, the
conductivity in the absence of any inhomogeneities. We suppose that

0 < c0 ≤ γ0(x) ≤ C0 <∞, x ∈ Ω

for some fixed constants c0 and C0. The function ψ denotes the imposed boundary current. It suffices
that ψ ∈ H−1/2(∂Ω), with

∫

∂Ω
ψ ds = 0. The background voltage potential, U , is the solution to the

boundary value problem

∇ · (γ0(x)∇U) = 0 in Ω ,

γ0(x)
∂U

∂n
= ψ on ∂Ω .

Here n denotes the unit outward normal to the domain Ω.
Let ωǫ denote a set of inhomogeneities inside Ω. The geometric assumptions about the set of inhomo-
geneities are very simple: we suppose the set ωǫ is measurable, and separated away from the boundary,
(i.e., dist(ωǫ, ∂Ω) > d0 > 0). Most importantly, we suppose that 0 < |ωǫ| gets arbitrarily small, where
|ωǫ| denotes the Lebesgue measure of ωǫ. Let γ̂ǫ denote the conductivity profile in the presence of the
inhomogeneities. The function γ̂ǫ is equal to γ0, except on the set of inhomogeneities; on the set of
inhomogeneities we suppose that γ̂ǫ equals the restriction of some other smooth function, γ1 ∈ C∞(Ω),
with

0 < c1 ≤ γ1(x) ≤ C1 <∞, x ∈ Ω .

In other words

γ̂ǫ(x) =

{

γ0(x), x ∈ Ω \ ωǫ

γ1(x), x ∈ ωǫ

The voltage potential in the presence of the inhomogeneities is denoted uǫ(x). It is the solution to

∇ · (γ̂ǫ(x)∇uǫ) = 0 in Ω ,

γ̂ǫ(x)
∂uǫ

∂n
= ψ on ∂Ω .

We normalize both U and uǫ by requiring that

∫

∂Ω

Uds = 0 , and

∫

∂Ω

uǫds = 0 .

We note that the individual voltages U and uǫ need not be smooth (or even continuous) on ∂Ω, however,
the difference uǫ −U is smooth in a neighborhood of ∂Ω, due to the regularity of γ0, and the fact that ωǫ

is strictly interior. The simplest version of our perturbation representation formulas asserts that (after
the possible extraction of a subsequence)

(uǫn
− U)(y) = |ωǫn

|

∫

Ω

(γ1 − γ0)(x)Mij(x)
∂U

∂xi

∂N

∂xj
(x, y) dµ(x)

+o(|ωǫn
|) y ∈ ∂Ω . (1)

Here N(x, y) is a fundamental solution (a Neumann function) corresponding to the smooth background
conductivity. M is a (symmetric, positive definite) matrix valued function, and µ is a probability measure
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[6],[8]. It is possible to establish optimal bounds for the set of possible matrices M , [6], [7]. To be precise

min{1,
γ0(x)

γ1(x)
} |ξ|2 ≤Mij(x)ξiξj ≤ max{1,

γ0(x)

γ1(x)
} |ξ|2 ,

Trace M(x) ≤ m− 1 +
γ0(x)

γ1(x)
, and (2)

Trace M−1(x) ≤ m− 1 +
γ1(x)

γ0(x)
,

µ almost everywhere in the set { x : γ0(x) 6= γ1(x) }. Quite strikingly (but on second thought, maybe
not so surprisingly) these bounds are the same as one may obtain for the (appropriately rescaled) first
variation with respect to volume fraction of the standard effective tensor that results from the mixture
of two material components [3], [11]. In the case when ωǫ is of the form ωǫ = ∪N

j=1(zj + ǫBj) (a finite
collection of diametrically small inhomogeneities) then the probability measure µ becomes a sum of delta
masses

µ =

N
∑

j=1

αjδzj
=

N
∑

j=1

|Bj |
∑

|Bj |
δzj

,

and (1) takes the form

(uǫ − U)(y) = |ωǫ|

N
∑

j=1

αj(γ1 − γ0)(zj)M
(j)∇U(zj) · ∇xN(zj, y)

+o(|ωǫ|) y ∈ ∂Ω (3)

(no extraction of a subsequence is necessary). In the case when ωǫ is a finite collection of uniformly thin
sheets with “mid-surfaces”, σj , 1 ≤ j ≤ N , and thickness ǫ, then the probability measure becomes a sum
of surface measures

µ =
N

∑

j=1

1
∑

|σj |
ds|σj

,

and (1) reads

(uǫ − U)(y) = ǫ
N

∑

j=1

∫

σj

(γ1 − γ0)(x)M(x)∇U(x) · ∇xN(x, y) dsx

+o(ǫ) y ∈ ∂Ω . (4)

In this case the polarization tensor M(x) has eigenvalues 1 in the directions tangent to the mid-surfaces,
and eigenvalue γ0(x)/γ1(x) in the orthogonal direction [4]. This tensor is “extreme” in the sense of the
inequalities (2), and it is possible to give a fairly simple proof of the representation formula (4), using
exactly that fact [7].
In the talk I shall briefly describe some of the techniques used to derive representation formulas such
as (1)–(4) (and higher order generalizations [1]). I shall also outline how specific formulas like this for
uǫn

−U allow for a quite accurate estimation of the total volume of the inhomogeneities in terms of one,
two or three boundary measurements [6]. Furthermore I shall describe how methods of a “linear sampling
type” in certain cases may be used to determine the probabbily measure µ from more detailed knowledge
of the full Dirichlet-to-Neumann data map [5].
Representation formulas like (1) hold in much more generality than described above. I shall in particular
discuss the case of extreme (infinite or zero) conductivity, and the necessary modifications [9]. I shall
also describe some very recent results concerning the Helmholtz Equation (and more generally, the time-
harmonic Maxwell’s Equations) with particular emphasis on the change of the formulas with respect to
frequency [2], [10]. These latter results are for the moment restricted to the case when ωǫ = ∪N

j=1(zj+ǫBj).
For small and moderate frequencies (of the order smaller that 1/ǫ) we can rigorously derive a perturbation
formula very much like the zero frequency formula (3). For large frequencies the situation becomes
significantly more complex, and we have so far only limited rigorous results. We have heuristically
derived quite precise, approximate representation formulas, based on a combination of an appropriate
Green’s formula, an ansatz of the nature of geometric optics, and stationary phase arguments [10].
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