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A usual problem in control theory is the problem of controllability: given two states, is it possible to go
from the first one to the second one by means of suitable control?
Even in finite dimension, find a necessary and sufficient condition for controllability is out of reach.
One can restrict our goal to the study of local controllability. In this case the two states are close to some
given equilibrium. A major method to study the local controllability around an equilibrium is to look
at the controllability of the linearized control system around this equilibrium. Indeed, using the inverse
mapping theorem, the controllability of this linearized control system implies the local controllability of
the nonlinear control system, in any cases in finite dimension and in many cases in infinite dimension. In
infinite dimension the situation can be more complicated due to some problems of “loss of derivatives”
as we shall see on examples. However, classical iterative schemes, as we shall see for hyperbolic systems
[7], and the Nash-Moser method as introduced by Karine Beauchard in [1] for Schrödinger (see also [2])
can allow to handle some of these cases.
When the linearized control system around the equilibrium is not controllable, the situation is more
complicated. However, for finite-dimensional systems, one knows powerful tools to handle this situation.
These tools rely on iterated Lie brackets. They lead to many sufficient or necessary conditions for local
controllability of a nonlinear control system. We shall recall some of these conditions.
In infinite dimension, iterated Lie brackets give some interesting results. However we shall see that these
iterated Lie brackets do not work so well in many interesting cases.
We present here three methods to get in some cases controllability results for some control systems
modeled by partial differential equations even if the linearized control system around the equilibrium is
not controllable. These methods are

1. The return method,

2. Quasi-static deformations,

3. Power series expansion.

Let us briefly describe them.
Return method. The idea of the return method goes as follows: If one can find a trajectory of the
nonlinear control system such that

• It starts and ends at the equilibrium,

• The linearized control system around this trajectory is controllable,

then, in general, the implicit function theorem implies that one can go from every state close to the
equilibrium to every other state close to the equilibrium. This method has been introduced in [3, 4]. It
has already been used for various partial differential equations:

1. For the Euler equation of incompressible fluids; see [4, 6], and [15] by Olivier Glass,

2. For the Navier-Stokes equation; see [5, 9] and [14] by Andrei Fursikov and Oleg Imanuvilov,

3. For the Burgers equation by Thierry Horsin in [18],

4. For the Saint-Venant equation in [7],

5. For the Vlasov-Poisson equation by Olivier Glass in [16],

6. For the Schrôdinger equation by Karine Beauchard in [1]; see also [2],

7. For the isentropic Euler equation by Olivier Glass in [17].

Quasi-static deformations. The quasi-static deformation method allows one to prove in some cases
that one can move from every equilibrium to every other equilibrium if these two equilibria are connected
in the set of equilibria. The idea is just to move very slowly the control (quasi-static deformation) so that
at each time the state is close to the curve of equilibria connecting the two given equilibria. If some of
these equilibria are instable, one also uses suitable feedback laws in order to stabilize them: without these
feedback laws the quasi-static deformation method would not work. This method has been introduced
in [7]. It has also been used
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• For a heat equation in [10],

• For a Schrödinger equation by Karine Beauchard in [1]; see also [2].

• For a wave equation in [11],

• For Couette flows by Michael Schmidt and Emmanuel Trélat in [21].

Power series expansion. In this method one does some power series expansion in order to decide
whether the nonlinearity allows to move in the directions which are not controllable for the linearized
control system around the equilibrium. This method has been introduced in [8] for a Korteweg-de Vries
equation and also been used in [2].

In this talk we present two applications of these methods:

1. For a Saint-Venant equation in Section 1,

2. For a Schrodinger equation in Section 2.

In the next sections we only state the results which have been obtained on these two equations. During
the talk we sketch the main ideas of the proofs.

1 Saint-Venant equation

In this section, we consider a 1-D tank containing an inviscid incompressible irrotational fluid. The tank
is subject to one-dimensional horizontal moves. We assume that the horizontal acceleration of the tank
is small compared to the gravity constant and that the height of the fluid is small compared to the length
of the tank. These physical considerations motivate the use of the Saint-Venant equation [20] (also called
shallow water equation) to describe the motion of the fluid; see e.g. [12, Sec. 4.2]. Hence the dynamics
equations considered are -see the paper [13] by François Dubois, Nicolas Petit and Pierre Rouchon-

Ht (t, x) + (Hv)x (t, x) = 0, (1)

vt (t, x) +

(

gH +
v2

2

)

x

(t, x) = −u (t) , (2)

v(t, 0) = v(t, L) = 0, (3)

ds

dt
(t) = u (t) , (4)

dD

dt
(t) = s (t) , (5)

where (see Figure 1),

• L is the length of the 1-D tank,

• H (t, x) is the height of the fluid at time t and at the position x ∈ [0, L],

• v (t, x) is the horizontal water velocity of the fluid in a referential attached to the tank at time t and
at the position x ∈ [0, L] (in the shallow water model, all the points on the same vertical have the
same horizontal velocity),

• u (t) is the horizontal acceleration of the tank in the absolute referential,

• g is the gravity constant,

• s is the horizontal velocity of the tank,

• D is the horizontal displacement of the tank.

This is a control system, denoted Σ, where
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Figure 1: Fluid in the 1-D tank

• The state is Y = (H, v, s,D),

• The control is u ∈ R.

Our goal is to study the local controllability of this control system Σ around the equilibrium point

(Ye, ue) := ((He, 0, 0, 0), 0).

This problem has been raised by François Dubois, Nicolas Petit and Pierre Rouchon in [13].
Of course, the total mass of the fluid is conserved so that, for every solution of (1) to (3),

d

dt

∫ L

0

H (t, x) dx = 0. (6)

(One gets (6) by integrating (1) on [0, L] and by using (3) together with an integration by parts.)
Moreover, if H and v are of class C1, it follows from (2) and (3) that

Hx(t, 0) = Hx(t, L), (7)

which is also −u (t) /g. Therefore we introduce the vector space E of functions Y = (H, v, s,D) ∈
C1([0, L]) × C1([0, L]) × R × R such that

Hx(0) = Hx(L), (8)

v(0) = v(L) = 0, (9)

and consider the affine subspace Y ⊂ E consisting of elements Y = (H, v, s,D) ∈ E satisfying

∫ L

0

H(x)dx = LHe. (10)

The vector space E is equipped with the usual norm

|Y | := |H |1 + |v|1 + |s| + |D|,

where, for w ∈ C1([0, L]),
|w|1 := Max{|w(x)| + |wx(x)|; x ∈ [0, L]}.

With these notations, we can define a trajectory of the control system Σ.
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Definition 1 Let T1 and T2 be two real numbers satisfying T1 ≤ T2. A function (Y, u) = ((H, v, s, d), u) :
[T1, T2] → Y × R is a trajectory of the control system Σ if

(i) The functions H and v are of class C1 on [T1, T2] × [0, L],

(ii) The functions s and D are of class C1 on [T1, T2] and the function u is continuous on [T1, T2],

(iii) The equations (1) to (5) hold for every (t, x) ∈ [T1, T2] × [0, L].

Our main result states that the control system Σ is locally controllable around the equilibrium point
(Ye, ue). More precisely, one has the following theorem.

Theorem 2 ([7]) There exist T > 0, C0 > 0 and η > 0 such that, for every Y0 = (H0, v0, s0, D0) ∈ Y,
and for every Y1 = (H1, v1, s1, D1) ∈ Y such that

|H0 −He|1 + |v0|1 < η, |H1 −He|1 + |v1|1 < η, |s1 − s0| + |D1 − s0T −D0| < η,

there exists a trajectory (Y, u) : t ∈ [0, T ] 7→ ((H (t) , v (t) , s (t) , D (t)) , u (t)) ∈ Y × R of the control
system Σ, such that

Y (0) = Y0 and Y (T ) = Y1, (11)

and, for every t ∈ [0, T ],

|H (t) −He|1 + |v (t)|1 + |u (t)| ≤

C0

(

√

|H0 −He|1 + |v0|1 + |H1 −He|1 + |v1|1 + |s1 − s0| + |D1 − s0T −D0|

)

. (12)

As a corollary of this theorem, any steady state Y1 = (He, 0, 0, D1) can be reached from any other steady
state Y0 = (He, 0, 0, D0). More precisely, one has the following corollary.

Corollary 3 ([7]) Let T , C0 and η be as in Theorem 2. Let D0 and D1 be two real numbers and let
η1 ∈ (0, η]. Then there exists a trajectory

(Y, u) : [0, T (|D1 −D0| + η1)/η1] → Y × R

t 7→ ((H (t) , v (t) , s (t) , D (t)) , u (t))

of the control system Σ, such that

Y (0) = (He, 0, 0, D0) and Y (T (|D1 −D0| + η1)/η1) = (He, 0, 0, D1), (13)

|H (t) −He|1 + |v (t)|1 + |u (t)| ≤ C0η1, ∀t ∈ [0, T (|D1 −D0| + η1)/η1]. (14)

2 Schrödinger equation

Let I = (−1, 1). We consider the following Schrödinger control system.

iψt(t, x) = −ψxx(t, x) − u(t)xψ(t, x), (t, x) ∈ (0, T )× I, (15)

ψ(t,−1) = ψ(t, 1) = 0, t ∈ (0, T ), (16)

Ṡ(t) = u(t), Ḋ(t) = S(t), t ∈ (0, T ). (17)

This is a control system, where

• The state is (ψ, S,D) with
∫

I
|ψ(t, x)|2dx = 1 for every t ∈ [0, T ],

• The control is the function t ∈ [0, T ] 7→ u(t) ∈ R.

This system has been introduced by Pierre Rouchon in [19]. It models a non relativistic charged particle
in a 1-D moving infinite square potential well. At time t, ψ(t, ·) is the wave function of the particle in a
frame attached to the potential well, S(t) is the speed of the potential well and D(t) is the displacement
of the potential well. The control u(t) is the acceleration of the potential well at time t. We want to

4



control at the same time the wave function ψ, the speed S and the position D of the potential well. Let
us first recall some important trajectories of the above control system when the control is 0. Let

ψn(t, x) := ϕn(x)e−iλnt, n ∈ N
∗. (18)

Here λn := (nπ)2/4 are the eigenvalues of the operator A defined on

D(A) := H2 ∩H1
0 (I; C)

by
Aϕ := −ϕ′′,

and the functions ϕn are the associated eigenvectors,

ϕn(x) := sin(nπx/2), n ∈ N
∗, if n is even, (19)

ϕn(x) := cos(nπx/2), n ∈ N
∗, if n is odd. (20)

Let us also introduce the following notations.

S := {ϕ ∈ L2(I; C); ‖ϕ‖L2(I;C) = 1},

H7
(0)(I; C) := {ϕ ∈ H7(I; C);ϕ(2k)(0) = ϕ(2k)(1) = 0 for k = 0, 1, 2, 3}.

With these notations, one has the following result, proved in [2].

Theorem 4 For every n ∈ N∗, there exists ηn > 0 such that, for every n0, nf ∈ N∗, for every
(ψ0, S0, D0), (ψ1, S1, D1) ∈ [S ∩H7

(0)(I; C)] × R × R with

‖ψ0 − ϕn0
‖H7 + |S0| + |D0| < ηn0

, (21)

‖ψ1 − ϕnf
‖H7 + |S1| + |D1| < ηnf

, (22)

there exist a time T > 0 and (ψ, S,D, u) such that

Ψ ∈ C0([0, T ];H2 ∩H1
0 (I; C)) ∩ C1([0, T ];L2(I; C)), (23)

u ∈ H1
0 ((0, T ),R), (24)

S ∈ C1([0, T ]; R), D ∈ C2([0, T ]; R), (25)

(15), (16) and (17) hold, (26)

(ψ(0), S(0), D(0)) = (ψ0, S0, D0), (27)

(ψ(T ), S(T ), D(T )) = (ψ1, S1, D1). (28)

Thus, we also have the following corollary.

Corollary 5 For every n0, nf ∈ N∗, there exist a time T > 0 and (ψ, S,D, u) satisfying (23)-(24)-(25)-
(26) such that (ψ(0), S(0), D(0)) = (ϕn0

, 0, 0), (ψ(T ), S(T ), D(T )) = (ϕnf
, 0, 0).

Remark 6 Let us point out that, if one does not care of S and D and if (n0, nf ) = (1, 1), Theorem 4 is
due to Karine Beauchard [1].
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