
Approximated Stiffness matrix for non linear operator by a collocation method

C. Chauvin
Laboratoire des Champs Magnétiques Intenses, Grenoble

1 Physical context

In electronic structure calculations, one objective is the determination of the ground state
of a system composed of atoms, i.e. of K nuclei (positioned in Rα, α = 1, N) and 2N
electrons occupying No energy levels. This ground state is determined by solving, in case
of Density Functional Theory approximation [1], the following system:

H[ρ] ψi = εi ψi, ∀ i = 1, . . . , N, (1)

H[ρ] = −1
2
∆ + V (r) + VC [ρ] + Vxc[ρ], (2)

where the density ρ is related to the orbitals ψi in the following way:

ρ = 2
No∑
i=1

ni |ψi|2,
No∑
i=1

ni = N, 0 6 ni 6 1.

Theoretically, occupation numbers ni can be fractional. It occurs when some successive
state energies εi = · · · = εi+k are equal, that is when an energy level is degenerate. For
simplicity we will assume here that ni = 1, ∀i = 1, No, and that the number of occupied

energy levels No is equal to N . Orbitals satisfy the orthogonality relation
∫

Ω
ψi ψ

∗
j dr =

δi,j . Details on the domain ⊂ R3 where these equations live will be given later. The
different potential terms, expressing the different interactions between electrons and nuclei,
write:

V (r) = −
K∑
α=1

Zα
|r−Rα|

,

−∆VC = 4πρ.

One way to solve numerically Poisson equation was presented in [2]. One usually use
the Local Density Approximation (LDA) or derivatives to get the exchange-correlation
potential Vxc in Hamiltonian operator (2). In LDA, the potential Vxc(r) is evaluated by
knowing the density at this point ρ(r). We thus need the expression of ρ in an interpolating
basis.
Assuming orbitals ψi are orthonormal, εi writes:

εi =< ψi, H[ρ] ψi > = < ψi, −
1
2
∆ ψi > + < ψi, (V (r) + VC [ρ] + Vxc[ρ]) ψi >

= ekin + ep, (3)

where ekin is the kinetic energy corresponding to the Laplacian, and ep is the potential
energy. As explained before the potential is expressed in an interpolating basis, and the
issue of this paper is the evaluation of ep by an accurate and efficient method. This leads
to look for a method to evaluate the application of an operator - the potential expressed
in a collocation basis - to an orbital ψi expressed in another basis.
We first present the basis used in this context. Then, a method that approximates the con-
struction of the Stiffness matrix is shown. Finally, some examples illustrate the efficiency
and viability of our method. In the next section, we present a multiresolution analysis
(MRA) on the three-dimensional unit torus Ω. In physical calculations, we will use a
dilatation of this domain by a parameter L, so that functions actually live in (R/LZ)3.
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2 Three-dimensional periodic MRA

Let ω = R/Z be the unit torus on R, and Ω the three-dimensional one Ω = (R/Z)3.
A periodic MRA {VJ} of L2(Ω) is constructed by an isotropic tensor product of one-
dimensional MRA {VJ}:

Def 2.1 (MRA of L2(ω)) Let {VJ} and {ṼJ}, j > 0 the sequences of two biorthogonal
MRA’s of L2(ω). Each couple of scaling functions φJ,k and φ̃J,l, with indices k, l in
ωJ = [0, . . . , 2J − 1] satisfies the biorthogonality relation:∫

ω
φJ,k(x) φ̃J,l(x) dx = δk,l, J ∈ N, k, l ∈ ωJ ,

where δk,l is the Kronecker delta. There is moreover two-scale relations for these functions:

φJ,k =
∑
ν∈ωJ

hJ+1(n− 2k)φJ+1,n, (4)

φ̃J,k =
∑
ν∈ωJ

h̃J+1(n− 2k)φ̃J+1,n.

where hJ and h̃J are filters coming from the 2J−periodisation of filters (h, h̃) associated
to the scaling functions defined on R.

The basis have compact support, corresponding to a finite length for h and h̃. Actually,
under suitable conditions, φ with compact support satisfying (4), and in the Sobolev space
Hm(ω) is of order m. The order m corresponds to the maximal polynomial degree one can
locally reproduce on VJ . This order has a decisive impact on approximation of functions
in an MRA, as it will be illustrated in the following.

This article is devoted to the evaluation of the Stiffness matrix expanded in scaling
function basis, we will not introduce here wavelets. Of course, the second step leading to
an adaptive scheme will be the study of such matrices in wavelet basis. The construction
of three-dimensional MRA is done as follows:

Def 2.2 (MRA of L2(Ω)) Assume the hypothesis of (def 2.1) are fulfilled, we define a
couple of biorthogonal MRA {VJ} and {ṼJ} of L2(Ω) by isotropic tensor product:

VJ = VJ ⊗ VJ ⊗ VJ ,

ṼJ = ṼJ ⊗ ṼJ ⊗ ṼJ .

Let ΩJ = ω3
J . A scaling function of VJ centered at k = (k1, k2, k3) ∈ ΩJ writes for

each r = (x, y, z) ∈ Ω:
ΦJ,k(r) = φJ,k1(x) φJ,k2(y) φJ,k3(z).

In the following we adopt a vector-type notation for the basis: FJ = {ΦJ,k}k∈ΩJ
(the same

holds for the dual F̃J). A function f of VJ with coefficients C = {cJ,k}k∈ΩJ
thus writes:

f = CTFJ =
∑
k∈ΩJ

< f, Φ̃J,k > ΦJ,k.

In next part we introduce some particular families used in our computations.
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2.1 Particular MRA used in this context

Algorithm used to solve the system (1) leads to the resolution of an eigenvalue problem
at each iterative step [3], which is quickly solved when the system is discretized in an
orthogonal basis.

Def 2.3 (Orthogonal MRA of L2(Ω)) Let {Vt1
J } be an orthogonal MRA of L2(Ω). Scal-

ing functions are called ΦJ,k, and are generated by tensor product of m1-order scaling
functions, with filter hJ .

In our tests we will use Daubechies families, Symmlets and Coiflets [4]. The potential is
expanded in a basis satisfying the interpolation property:

Def 2.4 (Interpolating scaling function) A scaling function ΘJ,k of Vt2
J is interpolat-

ing, when it satisfies the condition:

ΘJ,k(l/23J) = δk,l.

Such a function is also called Interpolet. In the following, we consider the biorthogonal
MRA’s {Vt2

J } and {Ṽt2
J } where the primal space Vt2

J is composed of interpolating scaling
functions ΘJ,k of Deslauriers-Dubuc [5] of order m2. The associated dual scaling function
Θ̃J,k is the Dirac distribution: Θ̃J,k(r) = δ(k/23J). As explained in section 1, the potential
is known at each point k/23J , k ∈ ΩJ . Let P be the set of point values with the appropriate
normalization, the potential V writes:

V (r) = P TTJ =
∑
k∈ΩJ

< V, Θ̃J,k > ΘJ,k(r) =
∑
k∈ΩJ

vJ,k ΘJ,k(r). (5)

The objective is to apply the operator V to an orbital ψi in an efficient way. The aim
is to reduce as far as possible the computational cost, which can become high in three
dimensions.

3 Approximated Stiffness matrix by collocation method

Coefficients of the exact potential Stiffness matrix GB resulting from the Galerkin formu-
lation are:

GBk,k′ =
∫

Ω1

ΦJ,k(r) V (r) ΦJ,k′(r) dr =
∑

m∈ΩJ

vJ,m

∫
Ω

ΦJ,k(r) ΘJ,m(r) ΦJ,k′(r) dr

=
∑

m∈ΩJ

vJ,m T(k−m,k′ −m), ∀k,k′ ∈ ΩJ .

By a change of variable, thanks to the symmetry around the function ΘJ,m, the calcu-
lation of GBk,k′ leads to a bidimensional convolution of coefficients P by the matrix T.
This matrix is a tensor product of three cyclic matrices T , whose coefficients are called
connection coefficients [6]:

T (k, k
′
) = 2J/2

∫
ω
φ(x− k) θ(x) φ(x− k

′
) dx.

The calculation of T can be found in [6]. Form1 = 4 (Daubechies) andm2 = 8 (Interpolet),
T has almost 30 coefficients greater than 10−8. In three dimensions, Table 1 gives the
repartition of coefficient modulus. More than 10000 coefficients are greater than 10−8.
Important coefficients are situated around the diagonal, that is for k close to k′.
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|T(k,k′)| > 10−4 > 10−8 > 10−11 > 10−16

# 684 9420 14980 12475

Table 1: Number of coefficients of T located between two magnitudes, with t1 = D4 and
t2 = I8. 9420 is the number of coefficients greater in module than 10−8, and smaller than
10−4.

We tried to find good properties for this matrix, to get an almost diagonal approxima-
tion of T . But work on this matrix seems not to be a good idea if one want to improve
algorithm complexity. That is why we look for other ways to approximate the Stiffness ma-
trix. These methods will be compared with Galerkin formulation by the way of potential
energy, which writes here:

Gẽp =
CT GB C

CT C
.

This calculation can easily be done in the specific case of Harmonic Oscillator, where
potential and orbital have separability properties. This will be done in section 4. The
next of this section is dedicated to new methods to construct approximated Stiffness
matrices.

3.1 Transfer operator

Let start with the orbital expanded in the orthogonal basis:

ψi(r) = CTFJ =
∑
k∈ΩJ

cJ,k ΦJ,k(r), (6)

where C = {cJ,k}k∈ΩJ
.

Def 3.1 (Transfer operator) Let Vt1
J the 23J -dimension space associated to an orthog-

onal MRA of L2(Ω), and let FJ be the scaling function basis of Vt1
J . We also consider

two spaces Vt2
J and Ṽt2

J of two biorthogonal MRA’s, with basis TJ and T̃J .
We define X ∈MΩJ ,ΩJ

(R) as the operator associating a set of coefficients C of a function
of f1 ∈ Vt1

J to a set of coefficients D of a function f2 ∈ Vt2
J :

X : MΩJ
−→ MΩJ

,

C 7−→ D.

A term of this operator writes:

∀ k,k′ ∈ ΩJ , X(k,k′) =
∫

Ω1

ΦJ,k′ Θ̃J,k dr.

In the same way, we define the operator Z:

Z : MΩJ
−→ MΩJ

D 7−→ C,

associating a function f2 ∈ Vt2
J to f1 ∈ Vt1

J . A coefficient of Z writes:

∀ k,k′ ∈ ΩJ , , Z(k,k′) =
∫

Ω1

ΘJ,k′ ΦJ,k.
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Figure 1: Errors ||D− (ZX)nD||l2 (case primal) and ||D− (XTZT )nZD||l2 (case dual) in
function on the resolution J , with n = 10. The trial function is a Gaussian. t1 corresponds
either to a Daubechies basis of order 3 or 4 (resp. D6, D8), or to a Coiflet basis of order
4 (C2).

We also can define transfer operator from Vt1
J to Ṽt2

J , and from Ṽt2
J to Vt1

J . Actually,
these operators are transposes of X and Z: a function f1 of Vt1

J with coefficients C, has
coefficients D̃ = ZTC in Ṽt2

J , and from Ṽt2
J , one has to apply XT to get a set of coefficients

for the expansion in Vt1
J .

Obviously, we don’t have X = Z−1. The next example shows, in case of a Gaussian,
the behavior of a series of application of operators Z and X.

Example 3.2 Let f2 be a Gaussian discretized on an interpolating basis, with coefficients
D. Here are presented two kinds of experiments:

1. First, express f2 into Vt1
J : we get C = ZD. Do successive passage to Vt2

J and Vt1
J ,

by applying the operator ZX. Then evaluate the error ||D − (ZX)nD||l2. As we go
here into the primal interpolating space, we denote in figure 1 this case by “primal”.

2. Second, apply n times XTZT to C, then compute the error ||D − (XTZT )nZD||l2.
Here, we express f2 into the dual interpolating space Ṽt2

J , we will then call this
“dual”.

Figure 1 shows errors in these two cases “primal” and “dual”, for different couples (t1, t2).
In case “primal”, the order m2 does not increase the error, as it is always at least twice
greater than m1 (D6-C1 is a particular case of quasi-interpolation). The error in this case
follows the law 2−Jm1 , that is linear with m1. In case “dual”, there is a dependence not
only on m1, but also on m2. The order of approximation behaves like 2 min(m1,m2), that
is to say quadratic. In other words, in the second method the successive application of ZT

and XT is closer to identity.

3.2 Applying Hamiltonian operator to an orbital

There are two different operations in applying Hamiltonian operator defined in (2) to an
orbital. Actually, it is linked to the way one evaluates kinetic and potential energies (3).
The first one corresponds to the H1 semi-norm of the function, and is presented in the
next subsection. The second one, potential energy, depends on the way one writes the
potential Stiffness matrix, and is detailed after.
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3.2.1 Kinetic energy

Kinetic energy of an orbital ψi (6) is deduced from expression (9), directly using the
Stiffness matrix of the Laplacian in Vt1

J :

ẽJkin =
(C)T A C

(C)T C
.

The Stiffness matrix A is obtained in a classical Galerkin way. In the following, let τJkin

be the relative error: τJkin =
|eJkin − ẽJkin|

|eJkin|
. The reference energy eJkin is defined as:

eJkin ∼
L3

23J

∑
k∈ΩJ

(∇ ψ(xJ,k))2,

where L is a dilatation parameter of the domain Ω (we consider in our tests the torus
(R/LZ)3, rather than Ω, to control the diffusion of test functions inside the domain).

3.2.2 Potential Energy

The potential energy ẽp depends on the construction of the potential Stiffness matrix. We
will present here two methods to construct it, starting with the potential V expressed in
the collocation basis TJ , with coefficients P (5).

Method 1
In the first method, the Stiffness matrix writes:

1B = Z P X.

If D = X C , that is D is the collocation vector of ψi on Vt2
J , and D̃ = ZT C ,

corresponding to the coefficients of ψi in the dual interpolating basis, then the potential
energy ẽp is approximated by:

1ẽJp =
D̃T P D

D̃TD
.

Method 2
In the second method, ψi is expressed in Ṽt2

J , and the result of applying potential operator
on this orbital is expanded in Vt2

J . One then apply the operator Z to get the expression
in Vt1

J :
2BJ = Z P ZT .

Potential energy then writes:

2ẽJp =
D̃T P D̃

D̃T D̃
.

We will in the next section study the relative error for the potential energy in the three
cases: Galerkin, methods 1 and 2. The relative error writes:

G,1,2τJp =
|G,1,2ẽJp − eJp |

|eJp |
, (7)

where eJp writes:

eJp ∼
L3

23J

∑
k∈ΩJ

V (xJ,k) ( ψ(xJ,k))2.
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4 Approximation order in linear case

We make three-dimensional tests on linear Hamiltonian. In the first case, the Harmonic
oscillator, the potential Vo and the solution ψo are very regular, so that we get numerically
error estimates depending on the basis order. In the second case, the Hydrogen atom, the
potential Vh and the orbital ψh are both in C0, and leading to more complicated laws for
the error behavior.
In tests presented here, we make a dilatation of the domain Ω, by a change of variable:
for all r = (X,Y, Z) ∈ Ω, we associate the triplet (x, y, z) so that X = x

L , Y = y
L , Z = z

L ,
with L = 10. Orbital is expanded in the space Vt2

J of interpolating scaling functions of
order m2:

ψ = 2−3J/2
∑
k∈ΩJ

ψ(xJ,k) ΘJ,k. (8)

Starting from this expression (8), we evaluate ẽJkin and ẽJp . The coefficients C = {cJ,k}k∈ΩJ

are obtained by applying a change of basis:

PJ ψ =
∑
k∈ΩJ

cJ,k ΦJ,k = CTFJ = (ZD)TFJ . (9)

4.1 Harmonic oscillator

The model of Harmonic Oscillator is:

H = −1
2
∆ +

1
2
|r|2, r ∈ Ω.

A solution (Eo, ψo) of the eigenproblem Hψ = E ψ is known analytically, that is:

ψo(r) = CN e−|r|
2/2, ∀ r ∈ Ω (10)

Eo = ekin + ep,

ekin =
< ψo| − 1

2∆|ψo >
< ψo|ψo >

= 0.75 a.u.,

ep =
< ψo|12 |r|

2|ψo >
< ψo|ψo >

= 0.75 a.u..

CN is a normalization factor, based on the L2 norm of ψo: ‖ ψo ‖2= 1. The orbital ψo
decays rapidly, so no need to have a great L. In this example, orbital ψo and potential Vo
live in C∞, so convergence order depends only on MRA orders m1 and m2.

4.1.1 Kinetic energy

Figure 2 shows the behavior of relative error τJkin in function of 2J . We used two Interpolet
orders, m2 = 6 et m2 = 8, in case of t1 = D8 (order 4). Dependence on m2 is weak. On
log/log scale, we obtain the following behavior for the relative error:

τJkin ∼ C 2−2J(m1−1).

Below 10−9, the machine precision interferes with values. The results are very similar
for a Symmlet and a Daubechies scaling function of same order (the Stiffness matrices of
Laplacian are identical). We get the same result with Coiflets (the error is of 10−5 with
2J = 32), but Daubechies functions have shorter support, and thus are more interesting
numerically.
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Figure 2: For Harmonic Oscillator, relative error τJkin, in function of 2J . Different order
of t1 and t2 are showed. The Daubechies indexed by D8 is of order 4.

The error between exact and approximated energy is thus quadratic in function of J
and m1. If we want to get an energy with precision ε, we need only a precision of

√
ε on

the orbital.

4.1.2 Potential Energy

Galerkin formulation
In case of Harmonic Oscillator, it is easy to evaluate the Galerkin Stiffness matrix, thanks
to the separability properties of the operator and the solution:

Vo(r) =
1
2
(x2 + y2 + z2) = v(x) + v(y) + v(z),

ψo(r) = CN e−|r|
2/2 = f(x) f(y) f(z),

f(x) = C
1/3
N e−x

2/2.

Let ω = [0, L[, we can express the potential energy in terms of one dimensional quantity:

ep =
∫

Ω
ψo(r) Vo(r) ψo(r) dr = 3

∫
ω
v(x) f2(x) dx = 3× 1

4
.

D8I8 D6I8 D6I4

32 0.7500070985 0.750043907 0.75055975

64 0.750000030114 0.75000067514 0.750033937

128 0.750000000058755 0.750000010427 0.750000010427

Table 2: Harmonic Oscillator: potential energy GẽJp in case of Galerkin formulation.

Table 2 shows potential energies GẽJp for different couples t1, t2. As the solution is
extremely regular, the precision directly depends on these two orders. For Daubechies
family, D8 designs a family of order 4, with support 8. I8 corresponds to Interpolet of
order 8. Convergence rates are in the three cases 8.5, 6.2 et 4. This suggests an error
behavior like:

GτJp ∼ C 2−J min(2m1+α, m2), α 6
1
2
.
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Figure 3: Harmonic Oscillator. Relative error 1τJp in function of the resolution 2J . In
three case, t1 is a Coiflet family with order respectively 2, 4 and 6. The last case shows
that even with a high order, a Daubechies basis does not behave as good as a Coiflet one.

C1 I8 C2 I8 C3 I8 D8e I10 D8s I8

2 4 6 4 4

1.97 4.01 5.87 3.94 4.00

Table 3: Harmonic Oscillator, rates in method 1 for different couples (t1, t2). Second line
corresponds to m1. s stands for symmetric, e for extremal.

A reasonable choice is thus an Interpolet order m2 > 2m1.

Method 1
Figure 3 shows the evolution of the relative error 1τJp defined in (7) in function of 2J , for
different couples (t1, t2). The coefficient rate behaves like:

1τJp ∼ C1 2−J min(m1,m2). (11)

Table 3 gives rates corresponding to figure 3. The poor approximation property of a
Daubechies scaling function (D8, of order 4) is mainly due to the fact it has no vanishing
moments.

Method 2
The rates obtained for the relative error in method 2 are relatively high. As observed in
figure 4, the error is quadratic:

2τJp ∼ C2 2−J min(2m1,m2), (12)

factor C2 depending on ‖ ψ ‖Hm1 and ‖ ψ ‖Hm2 . Here, there is not a so big difference
between Daubechies and Coiflets. This is certainly due to the fact that orbital is expressed
in Ṽt2

J , but not in Vt2
J . The quadratic behavior means that if ψi is evaluated with error

ε, then its energy will have an error of ε2. We can therefore conclude that this evaluation
of potential energy is optimal.

Energies of method 2 (Table 4) are of same order as those obtained in Galerkin for-
mulation (Table 2). We thus have a method to apply a potential operator with the same
approximation order as for the Galerkin formulation, but with a reasonable cost in three
dimensions. Indeed, applying operators Z and X is linear with the support of scaling
functions, rather than quadratic in case of connection coefficients.
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Figure 4: Harmonic Oscillator, 2τJp in function of 2J , for different orthogonal basis t1:
Coiflets (left) and Daubechies (right). Curves C3I10 and D8I10 show the influence of
m2, in function of m1.

J D6I8 D8I8 C2I8

5 .750043053 .750010176 .7500094682

6 .75000062740 .750000043524 .750000040569

7 .750000009528 .7500000001122 .75000000010048

Table 4: Harmonic Oscillator. 2ẽJp for different J (column) and different couples (t1, t2).

4.2 Hydrogen atom

For Hydrogen atom, Hamiltonian operator writes He = −1
2
∆ + Vh , with Vh(r) = − 1

|r| .

The ground state (Eh, ψh) is known analytically:

ψh(r) = CN e−|r|,

where CN is a normalization constant. Different energies characterizing the ground states
are (in Atomic Unit or Hartree):

• Kinetic energy ekin = 0.5 H.

• Potential Energy ep = −1. H.

• Ground state energy Ee = ecin + ep = −0.5 H.

4.2.1 Kinetic energy

The evolution of τJkin depends on the Hs-regularity of the orbital ψe. Indeed, we observe
(for instance in figure 5) the following behavior:

τJkin ∼ C 2−2J(min(m1,s)−1),

prefactor C increasing with m1. Numerically, Sobolev regularity of the orbital is around
2.4. This value coincide with a theoretical result made by H.-J. Flad (MPI, Leipzig), that
should give rise to an article, claiming that Hydrogen orbital has a regularity smaller than
5
2 .
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Figure 5: Hydrogen Atom: τJkin in function of 2J , for different couples t1, t2.

C1I6 D6I6 C2I6 D8I6 C3I8

2.06 4.05 3.95 4.14 3.97 4.12 3.93 4.06 4.23 4.06

Table 5: Potential Vh, orbital ψo. Convergence rates for the relative errors 1τJp and 2τJp .

In figure 5, Daubechies basis is slightly better than Coiflets, certainly due to the
fact that the Laplacian Stiffness matrix in Daubechies basis is the same that those with
interpolating one. For physical systems, where the potential is more irregular, it is thus
not useful to take high order basis.

4.2.2 Potential Energy

The potential Vh is implemented, such that its singularity is located between two discreti-
sation points. Thus it does not appear numerically.

• At first, we evaluate the relative error in case the orbital is a Gaussian (10). Results of
convergence are shown in Table 5. As the singularity does not appear numerically,
Vh-regularity does not correspond to the reality. Nevertheless, these convergence
rates give informations about the quality of the two methods. Actually, it appears
in Table 5 that method 2 is in general slightly better that method 1. Values obtained
for t1 = C1 are compatible with the behavior like 2−J min(m1,m2). The convergence
rate is around 4, and certainly represents the numerical regularity of Vh.

• For Hydrogen orbital ψh, except for Coiflets of order m1 = 2, we get always a
convergence rate between 2.89 and 2.98 for both methods 1 and 2, and for any
m2. As Hydrogen orbital Sobolev regularity is equal to s1 = 2.4, it means that the
regularity of Vh, s2, plays a role in this rate, and we thus can not write estimations
like (11) and (12). For each couple (m1,m2), the error is of order 10−4 for 2J = 128.

4.2.3 Influence of pseudo-potential

As in electronic structure calculation, one usually use pseudo-potentials, an example here
of results for a particular pseudo-potential is given. Pseudo-potentials have several prop-
erties, the main one being to screen nucleus potential (singular) by the first electrons of
the atom. The result gives a potential one applies to higher level electronic orbitals.
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• In our tests, we use the following one:

Vloc(r) = − 1
|r|
erf

(
|r|√
2 rloc

)
+e−

1
2
(

|r|
rloc

)2
(
C1 + C2(

|r|
rloc

)2 + C3(
|r|
rloc

)4 + C4(
|r|
rloc

)6
)
,

where erf denotes the error function or repartition of the normal law, and Ci, rloc are
coefficients depending on atom characteristics. Numerical values of these parameters
can be found in the article [7].

• The second difficulty in atomistic simulation is the long range of potentials, behaving
like 1/|r|. On the torus Ω, we have to cut it artificially, by applying a window.

The Hamiltonian tested here is thus:

H = −1
2
∆ + Ṽ = −1

2
∆ +

Vloc(r)
1 + eβ (|r|−rc)

.

The orbital ψ1 associated to the ground state of the system described by H is not equal
to ψe. Nevertheless we will use the couple (Ṽ , ψe) in our numerical tests, knowing that

V (r) 6 Ṽ (r) ∀ r ∈ Ω, implying the energy inequality ep 6
< ψe , Ṽ ψe >

< ψe, ψe >
(recall that

ep is the theoretical Hydrogen potential energy). The ground state orbital ψ1 for the
potential Ṽ have also to satisfy the same inequality:

ep 6
< ψ1 , Ṽ ψ1 >

< ψ1, ψ1 >
.

Indeed V is deeper than Ṽ , meaning that electron is more attracted by V : this implies

that kinetic energy <ψ1 , − 1
2
∆ ψ1>

<ψ1, ψ1>
increases.

Table 6 shows different convergent rates. Figure 6 illustrates observations too. We get the
maximal order 2.95 for m1 > 4 and m2 > 4.

Figure 6: Hydrogen Atom with pseudo-potential. Relative errors (1τJp (left), and 2τJp
(right)) in function of 2J , for several couples (t1, t2).

There is not a big difference between D6I8 of Table 6 and D6I6 of Figure 6. No need
to take a high order m2. Moreover, Daubechies scaling function does not have vanishing
moments like Coiflet, as a consequence they are asymmetric, and not centered. This
explains the poverty of rate convergences using this family.
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(t1, t2) D6I8 C1I8 D8I6 D8I10 C2I4 C2I8 C3I8

m1,m2 3,8 2,8 4,6 4,10 4,4 4,8 6,8

rate 1.9 2.2 2.9 2.9 2.95 2.95 2.95

Table 6: Hydrogen Atom with pseudo-potential. Convergence rates of the relative error
1τJp , for different couples t1, t2.

Conclusion

As a conclusion, we present in this paper approximate methods to construct the Stiffness
matrix associated to a potential operator. These methods can be understood as collocation
ones, since the potential is developed into an interpolating basis. Their attractivity thus
rely one their ability to cope with both orthogonal basis (for orbitals) and collocation
one. Method 2 shows in case of regular potential and orbital a precision close to the
Galerkin formulation. The difference between methods 1 and 2 are not so clear with loss
of regularity, nevertheless they are competitive with Galerkin one, as calculations required
in both cases are more efficient than for the classical formulation, for a reasonable error.
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