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Abstract

This paper is devoted to computations of eigenvalues and eigenvectors for the
Schrödinger operator with constant magnetic �eld in a domain with corners, as the
semi-classical parameterh tends to0. The eigenvectors corresponding to the smallest
eigenvalues concentrate in the corners: They have a two-scale structure, consisting of
a corner layer at scale

p
h and an oscillatory term at scaleh . The high frequency

oscillations make the numerical computations particularly delicate. We propose a high
order �nite element method to overcome this dif�culty. Relying on such a discretiza-
tion, we illustrate theoretical results on plane sectors, squares, and other straight or
curved polygons. We conclude by discussing convergence issues.

1 Introduction

Superconductivity theory, modeled by Ginzburg and Landau,motivates investigations of
the Schrödinger operator with magnetic �eld and Neumann boundary conditions in two-
dimensional domains. The Schrödinger operator� (hr � iA )2 derives from a linearization
of the Ginzburg-Landau functional and the behavior of its eigenvalues and eigenvectors as
h ! 0 gives information about the onset of superconductivity in the material, see [6, 7, 13,
14, 20, 29] for the general framework and [2, 15, 16, 17, 18, 19, 24, 26, 28] for more closely
related questions concerning the Schrödinger operator.

We give the mathematical framework we will work within: let
 denote a bounded
polygonal domain inR2 and A the magnetic potential12(� x2; x1) de�ned on R2 . We
investigate the behavior of the eigenpairs of the Neumann realization Ph on 
 for the
Schrödinger operator� (hr � iA )2 as h ! 0. The variational space associated with
Ph is H 1(
) and its domain is the subspace of functionsu such thatPhu 2 L 2(
) and
� � (hr � iA )u = 0 on @
 , with � denoting the unit normal to@
 .

Let us �rst mention that the Schrödinger operatorPh is gauge invariant in the sense of
the following proposition:
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Proposition 1.1. Let � 2 H 2(
) , thenu is an eigenvector associated with the eigenvalue
� for the operator� (hr � iA )2 if and only if u� := e i�=h u is an eigenvector associated
with the eigenvalue� for the operator� (r � i (A + r � ))2 .

In particular, the eigenvalues of the Schrödinger operator are the same for any potential
~A such thatcurl ~A = curl A . This allows the use of adapted gauges according to the

domain.

In [10], a complete asymptotic expansion of low-lying eigenstates is exhibited for curvi-
linear polygonal domains and re�ned results are proved in the case when the domain has
straight sides and the magnetic �eld is constant. The eigenmodes have a two-scale structure,
in the form of the product of a corner layer at scale

p
h with an oscillatory term at scale

h. The latter makes the numerical approximation delicate.A posteriorierror estimates are
used in [3, 9] to determine localized mesh re�nement in a low degree �nite element method.
We investigate here a �nite element method using high degreepolynomials, as described in
Section 2.

It is proved in [10] that the study of the Schrödinger operator Ph in a domain with corners
of openings� 1 , . . . , � J , relies on those of the Schrödinger operatorQ� := � (r� iA )2 on
an in�nite sector of opening� , for � = � 1; : : : ; � J . Section 3 is devoted to this operator:
We show computations which make theoretical results more complete.

The next sections deal with the asymptotic behavior of the eigenstates ofPh as h goes
to 0: We give numerical solutions which illustrate the clustering of eigenvalues, depending
on the symmetries of the domain. Several particular polygonal domains are investigated,
highlighting different points of the theory: Tunneling effect for the square, concentration in
the lowest corners for the trapezoid, the rhombus or the L-shaped domain. We end with a
curvilinear polygon for which the asymptotics is appreciably different.

We conclude the paper in Section 7 by numerical error curves for the speci�c case of
a standard square of length2, and h = 0 :02. We compare the performances of “p-
extensions” (increasing the polynomial degree on a �xed mesh), and of “h-extensions”
(re�ning the mesh with a �xed degree). According to the magnitude of h, a locking phe-
nomenon is present, stronger and stronger ash ! 0. A disturbing feature of this locking
is the preasymptotic convergence to interior modes, corresponding to the lowest Landau
level, signi�cantly larger than the correct eigenvalues. Our conclusion is the necessity for
using “p-extensions” if we wish to capture �ne effects like the tunneling effect in symmetric
domains.

2 General results on eigenvalue approximation

In the sequel, we will show numerical results of spectral approximations for the Schrödinger
operator in various domains. We wish �rst to recall some facts on the numerical computa-
tion of eigenvalues and eigenvectors by a �nite element Galerkin method, which serve as a
basis to justify the relevance of our results.

Let us �x some notation:

� � h;n is then -th eigenvalue of the operatorPh ,
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� uh;n is a normalized associated eigenfunction inV = H 1(
) ,

� (T ` )`> 0 is a family of quadrilateral meshes, where` is the maximum size of the
elements (we changed the traditionalh into ` since the letterh already stands for the
small semi-classical parameter),

� Qp is the standard space of polynomials of partial degreep in the reference square
element,

� V `;p is the conforming discrete variational space associated with the Qp -reference
square element on the meshT` ,

� (� `;p
h;n ; u`;p

h;n ) is then -th discrete eigenpair ofPh in V`;p :

Z



(hr � iA )u`;p

h;n � (hr � iA )v dx = � `;p
h;n

Z



u`;p

h;n v dx; 8v 2 V `;p :

For the �rst eigenpair (n = 1 ) or, more generally, if� h;n 6= � h;n � 1 , it is known from [4, 5,
11] that the following Céa-like estimate holds

j� h;n � � `;p
h;n j � L `;p

h;n sup
u2 M h;n

inf
� 2V `;q

ku � � k2
V ; (1)

whereM h;n is the set of normalized eigenvectors1 associated with� h;n andL `;p
h;n a positive

constant which, for each �xedh > 0 and n 2 N, is bounded as̀ ! 0 or p ! 1 .
Moreover the corresponding estimate for eigenvectors reads: There exists an eigenvector
~uh;n associated with� h;n satisfying

k~uh;n � u`;p
h;n kV � L `;p

h;n sup
u2 M h;n

inf
� 2V `;q

ku � � kV : (2)

Thus discretization errors on the eigenpairs are essentially bounded by the best approx-
imation errors on the eigenvectors ofPh . We have to keep in mind that the latter closely
depends on the semi-classical parameterh.

In the following, we will interpret the Galerkin approximations obtained for the eigen-
pairs, with respect to the asymptotic results of [10]. We emphasize the fact that, since by
constructionV`;p � V , the computed eigenvalues will always begreater than the exact
eigenvalue of same rank.

All the results displayed in this paper have been obtained with the Finite Elements Li-
brary Mélina, see [27]. Computations are mostly done with pretty coarse meshes (consisting
of less than100 quadrilaterals), but with high polynomial degree (10 in general, referred
to asQ10 -approximation). We justify our choice of a “p-extension” (where the degreep of
polynomials is increased), rather than a “h-extension” (where the sizè of the elements is
decreased), by the fact that – for the same number of degrees of freedom – a p-extension
captures oscillations more accurately than a h-extension,see [1, 22, 23] for related ques-
tions concerning the Helmholtz equation and dispersion relations at high wave number.
This point is discussed in more detail in Section 7.

1If � h;n = � h;n � 1 , the setM h;n has to be modi�ed accordingly.
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3 Model operators in in�nite sectors

This section is devoted to the study of the Schrödinger operator � (r � iA )2 in an in�nite
sector: The analysis of the operatorPh in a bounded domain with corners relies on this
model situation. We �rst recall some theoretical results from [8] concerning the spectrum
of the operator and, next, we show some numerical experiments which illustrate some of
these results or give hints on how to extend them.

3.1 Theoretical results on sectors

We denote byX = ( X1; X2) the Cartesian coordinates inR2 , and byR = jXj and � the
polar coordinates. LetG� be the sector inR2 with opening� :

G� = f X 2 R2; � 2 (0; � )g;

andQ� be the Neumann realization of the Schrödinger operator� (r � iA )2 on the sector
G� . With the potentialA (X) = 1

2(� X2; X1) , the operatorQ� takes the form

Q� = � � + i (X1@X2 � X2@X1 ) +
1
4

jXj2:

The operatorQ� is associated with the following variational space

V� =
�

	 2 L 2(G� ); (r � iA )	 2 L 2(G� )
	

; jj 	 jj2
V � = jj 	 jj2

L 2 + jj (r � iA )	 jj2
L 2 :

We denote by� k (� ) the k -th smallest element of the spectrum given by the max-min
principle. We quote some results of [8] about the spectrum ofQ� .

Theorem 3.1.

(i) The in�mum of the essential spectrum ofQ� is equal to� 0 := � 1(� ) .

(ii) For all � 2 (0; �= 2], � 1(� ) < � 0 and, therefore,� 1(� ) is an eigenvalue.

(iii) Let � 2 (0; 2� ) and k � 1. Let 	 �
k be an eigenfunction associated with� k (� ) < � 0

for the operatorQ� . Then	 �
k satis�es the following exponential decay estimate:

8" > 0; 9C";� > 0;
�
�
�
� e

� p
� 0 � � k (� ) � "

�
jXj 	 �

k

�
�
�
�
V � � C";� : (3)

(iv) For all � 2 (0; � ],
� 0

�
�

� 1(� )
�

�
1

p
3

; (4)

and there holds
� 1(� )

�
!

1
p

3
as � ! 0: (5)

Remark 3.2. Using the same technique as [8], one can establish asymptotics of thek -th
eigenvalue as� ! 0, similar to (5):

� k (� )
�

!
2k + 1

p
3

as � ! 0: (6)
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3.2 Numerical experiments on sectors

We present here some results of numerical computations of the low-lying eigenvalues,
which illustrate the estimates (4), (5) and (6). Furthermore, it allows to investigate the
monotonic behavior of� k (� ) with respect to the opening� .

The method we have used to compute approximations of the eigenvalues consists in a
high order �nite element method, using quadrilateral elements and tensor-product polyno-
mials of degree10. Let us explain the way we deal with the unboundedness of the domain:
For a given� , we mesh a bounded cornered strip! of opening� , see Figure 1, and, for
any h > 0, we consider the scaled operatorQ�

h;! de�ned on ! as

Q�
h;! = � (hr � iA )2: (7)

p
2

p
2

2

Figure 1: Meshes on cornered strips for� = 0 :1�; 0:35�; 0:75� .

By dilatation, the eigenvalues of the operatorQ�
1;h � 1 ! are the same as those ofQ�

h;!
divided by h. Consequently, taking the decay of eigenvectors into account, we recover the
eigenvalues ofQ� on the in�nite sectorG� at the limit h ! 0. This formulation offers the
advantage to be consistent with the analysis in the next sections for bounded domains.

Figure 2: Moduli of the �rst eigenfunction for� = 0 :1�; 0:35�; 0:75� .

To ensure that the eigenvalues in the in�nite sector are approximated from above, we
impose Dirichlet boundary conditions on the edges of! which differ from the boundary
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of G� (keeping natural Neumann conditions elsewhere). The choice of meshes such as
in Figure 1 is justi�ed by the localization of the eigenvectors given in Theorem 3.1. This
exponential concentration is illustrated in Figure 2: We note that the behavior of the �rst
eigenvector changes when the opening increases. Indeed, when the opening is small (e.g.,
� � �= 10 like in the left picture of Figure 2), the eigenvector appears to be essentially
radial, in coherence with asymptotics as� ! 0. When the opening increases, the modulus
of the eigenvector spreads out along the boundary (see rightpicture of Figure 2). Conse-
quently, we realize computations with two different meshesaccording to the opening (the
mesh on the right of Figure 1 is re�ned near the edges where theeigenvector is expected to
be mostly supported).

3.2.1 Asymptotics of� k ( � ) as � ! 0

In order to increase the accuracy of the approximation of theeigenvalues for small angles,
we introduce a gauge transform which leads to the potential~A(x) = ( � x2; 0). The result-
ing operator ~Q� = � (r � i ~A )2 has the same spectrum thanQ� , as explained in Propo-
sition 1.1. The relevance of such a transform is linked to theamplitude of the potential:
for small openings� , ~A is smaller thanA in the considered domain. We expect a better
approximation for~Q� than forQ� since the associated eigenvectors are less oscillating.
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Figure 3: � k(� ) vs. �
� , k = 1 ; : : : ; 7.

In Figure 3, we present numerical computations of� k(� ) for k = 1 ; � � � ; 7 and � 2
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f j�= 1000; j = 1 ; : : : ; 200g using h = 0 :01; 0:002; 0:0005; 0:0001. We observe that we
capture very precisely the asymptotics of� k (� ) given in (6) as soon as the parameterh is
small. This is a consequence of the behavior of the eigenvectors recalled in Theorem 3.1: the
eigenfunctions are localized near the corner and are exponentially small far from the corner.
Consequently, the lessh, the less information we lose, and the better the approximation of
the eigenpairs.

The improvement of the approximation for small angles is clear in Figures 3, whereas
the situation seems to be the reverse for larger values of� . Indeed, the eigenvalues being
approximated from above, the results for� > �= 10 are deteriorating for smallh. This phe-
nomenon can be explained by the fact that we keep the same number of elements to capture
higher oscillations: the mesh is too coarse to approximate accurately the eigenfunctions.

3.2.2 Monotonicity of � 7! � 1( � )

Let us now focus on the �rst eigenvalue. We have observed the asymptotic behavior (4) as
� ! 0 in Figure 3 for � 2 (0; �= 5). Figure 5 gives computations for� 2 (0; � ) with a
discretizationf j�= 200; j = 1 ; : : : ; 200g. We have realized these computations with several
values ofh between10� 4 and 0:5 and three magnetic potentialsA (x) = 1

2(� x2; x1)
(symmetric gauge),eA (x) = ( � x2; 0) and bA(x) = (0 ; x1) (Landau gauges). According
to Proposition 1.1, the Schrödinger operator associated with these three potentials have the
same spectrum and the eigenvectors can be easily deduced onefrom the other. We show in
Figure 4 the effect of the gauge on the phase of the �rst eigenvector. The potentialeA is
better adapted for small openings (� < �= 10), the potential bA is more convenient for large
openings (� > 19�= 20) since the eigenvector is localized in the corner and also along the
Neumann boundary. For the other openings, the potentialA gives better results.

Figure 4: Phases of �rst eigenvector for gaugesA , eA , bA .

The curve in Figure 5 plots the minimum value obtained from these con�gurations for
any opening. We have also represented on the graph the bottomof the essential spectrum
� 0 ' 0:5901 and the lower and upper bounds given in (4). Since the numerical estimates
for the bottom of the spectrum give an upper-bound of� 1(� ) , we are ensured that� 1(� ) <
� 0 for any � 2 f j�= 200; j = 1 ; : : : ; 190g. We have gathered in Table 1 the value of� 1(� )
obtained for� = j�= 40. The comparison between the numbers obtained withQ9 andQ10 -
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approximations provides an accuracy estimation for the computed eigenvalues. Numerical
experiments for� 2 [�; 6�= 5] do not show eigenvalue less than� 0 with similar meshes as
in Figure 1.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4
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0.6

Essential spectrum
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Lower bound
Numerical estimates

Figure 5: � 1(� ) vs. �
� for � 2 [0; � ].

� 1
�
j �

40

�
� 1

�
j �

40

�
� 1

�
j �

40

�

j Q9 Q10 j Q9 Q10 j Q9 Q10

1 0.04516 0.04516 16 0.46400 0.46400 31 0.57623 0.57614
2 0.08930 0.08930 17 0.47704 0.47704 32 0.57924 0.57922
3 0.13160 0.13160 18 0.48898 0.48897 33 0.58193 0.58185
4 0.17153 0.17153 19 0.49990 0.49990 34 0.58430 0.58415
5 0.20883 0.20883 20 0.50991 0.50991 35 0.58632 0.58619
6 0.24339 0.24339 21 0.51907 0.51907 36 0.58819 0.58763
7 0.27524 0.27524 22 0.52745 0.52745 37 0.58997 0.58904
8 0.30447 0.30447 23 0.53512 0.53512 38 0.59030 0.59000
9 0.33123 0.33123 24 0.54213 0.54213 39 0.60130 0.59149
10 0.35570 0.35570 25 0.54853 0.54852 40 0.59087 0.59064
11 0.37806 0.37806 26 0.55435 0.55435
12 0.39848 0.39848 27 0.55965 0.55964
13 0.41713 0.41713 28 0.56445 0.56443
14 0.43418 0.43418 29 0.56880 0.56876
15 0.44976 0.44976 30 0.57272 0.57265

Table 1: Numerical values for the bottom of the spectrum.
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Remark 3.3. Considering the results in Figure 5, we conjecture that� 1 is strictly increasing
from (0; � ] onto (0; � 0] , equal to� 0 on [�; 2� ] and that� 0

1(� ) = 0 . Furthermore, from
the results in Figure 3 it appears that there is only one eigenvalue � 1(� ) below the essential
spectrum for� 2 (�= 5; � ) .

4 Square

We consider here the Schrödinger operatorPh = � (hr � iA )2 with Neumann boundary
conditions on the model square
 sq = ( � 1; 1) � (� 1; 1), and the range1 to 0:01 for the
parameterh.

4.1 Theoretical results

We denote bys1 = ( � 1; � 1), s2 = (1 ; � 1), s3 = (1 ; 1), s4 = ( � 1; 1) the vertices of
 sq.
The analysis of the eigenpairs ofPh on the square �ts in the framework of more general
polygonal domains, studied in [10]. We give here a speci�ed version of the results, which
takes into account the symmetry properties of the square.

Relying on Remark 3.3, we admit that there is only one eigenvalue � 1(�= 2) below � 0

for the operatorQ�= 2 on the quarter plane and that� 1(�= 2) is simple. Corresponding to the
4 corners of the square, the �rst4 eigenpairs ofPh derive from4 quasi-modesgenerated
by the eigenpair

�
� 1(�= 2); 	 �= 2

1

�
on the quarter plane:

Notation 4.1. � Let � h;n be then -th eigenvalue ofPh counted with multiplicity anduh;n

be a normalized eigenfunction associated with� h;n .
� We introduce the sumFh of the �rst 4 eigenspaces ofPh :

Fh = span
�

uh;1; uh;2; uh;3; uh;4
	

:

� We de�ne the corresponding spaceEh of quasi-modes

Eh = span
�

 h;s1 ;  h;s2 ;  h;s3 ;  h;s4

	

generated by the4 functions h;sj de�ned as follows: Letj 2 f 1; 2; 3; 4g and R j be the
rotation of opening(j � 1)�= 2. We �rst de�ne the function � h;sj by

� h;sj (x) =
1

p
h

exp
�

i
2h

x ^ sj

�
	 �= 2

1

�
R j (x � sj )p

h

�
on R � 1

j G�= 2 (8)

and set
 h;sj (x) = � j (x) � h;sj (x) on 
 sq: (9)

Here � j is a radial smooth cut-off function with support in the ballB (sj ; 2) and equal to1
in B (sj ; 2 � � ) for some positive� .

The quasi-modes h;sj allow to compare the eigenvalues ofPh with those ofQ�= 2 ; the
distance between the clustersEh and Fh can be quanti�ed as well. The results of [10]
applied to the situation of a square give the estimates:
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Proposition 4.2. With Notation4.1, for any " > 0, there existC" > 0 such that for
n = 1 ; 2; 3; 4,

�
�
� � h;n � h� 1

� �
2

� �
�
� � C" exp

0

@�
2
q

� 0 � � 1
� �

2

�
� "

p
h

1

A : (10)

Furthermore, for any" � � :

d(Eh ; Fh) � C" exp

0

@�
2
q

� 0 � � 1
� �

2

�
� "

p
h

1

A ;

whered is the distance de�ned byd(Eh ; Fh) = jj � Eh � � Fh � Eh jjH ; with � Eh and � Fh

the orthogonal projections ontoEh and Fh respectively.

Consequently the eigenvectors associated with the smallest four eigenvalues ofPh are
exponentially close to a linear combination of the four quasi-modes h;sj , j = 1 ; 2; 3; 4.
Numerical experiments show that these combinations are nottrivial. Furthermore, this the-
orem also proves that the smallest four eigenvalues ofPh form aclusterexponentially close
to h� 1(�= 2). Numerical experiments bring more information about the behavior of these
eigenvalues, and display �ne interactions. Moreover, although no theoretical results are
available for eigenvalues of rank larger than 5 (except the fact that they cannot converge
below � 0 ' 0:59), we will see that they also organize into clusters of 4.

In the following, when representing eigenmodes, we show their moduli and, most often,
their phases. The phase is computed according to the formulaarcsin(Im (z)=jzj) .

4.2 Dependency onh of the �rst eigenfunction

Formula (8) exhibits a two-scale structure for the quasi-modes: a corner layer at scale
p

h
coming from the dilatation	 �= 2

1 (�=
p

h) , and an oscillatory term at scaleh due toe
i

2h x^ s.
Relying on Proposition 4.2, the same holds for the functionsin the eigenspaceEh . Conse-
quently, especially because of harsh oscillations, there is a dif�cult issue of approximating
correctly the eigenfunctions ofPh for small values ofh.

We present as a conclusion of this paper in Section 7 a systematic investigation of errors
when discretizing our problem on the square thanks to h-extensions with bilinear elements,
or to p-extensions with coarse meshes of1 to 64 elements. In this section, we choose each
time an optimal combination mesh-degree to display eigenmodes.

To compute the �rst eigenfunction forh = 0 :1, 0:08, 0:06, 0:04, 0:02, 0:01, we keep
the polynomial approximation �xed toQ10 and a8 � 8 mesh. Figure 6 gives the modulus
of the �rst eigenfunction and Figure 7 its phase. As expected, we observe that the modulus
is more and more concentrated in the corners and phase has sharper oscillations whenh
decreases.
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Figure 6: Moduli of the �rst eigenfunction,h = 0 :1; 0:08; 0:06; 0:04; 0:02; 0:01.

Figure 7: Phases of the �rst eigenfunction,h = 0 :1; 0:08; 0:06; 0:04; 0:02; 0:01.

4.3 Dependency on the rank of eigenfunctions for a given value of h

In Figures 8 we keeph = 0 :02 �xed and compute the eigenfunctions associated with the
smallest eight eigenvalues ofPh . We observe that the eigenvectors associated with the
smallest four eigenvalues are localized in the four cornersas predicted by Proposition 4.2,
and that, moreover, each one is present in all the four corners, as can be predicted by symme-
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try arguments. There is no theoretical results for the next eigenpairs, but the computations
show a localization of the eigenvectors along the edges of the square.

The full portrait (modulus and phase) of the �rst 32 modes canbe found in Appendix A.

Figure 8: Moduli of the �rst 8 eigenfunctions,h = 0 :02.

4.4 Tunneling effect

The tunneling effectrefers to the interaction between symmetric potential wells, see [21]
for instance. In our situation, the tunneling effect applies to corners of the same aperture. If
present, this effect is an interaction of eigenvalues inside the same cluster, possibly stronger
than the convergence of the whole cluster to its asymptotic limit. It could be formally
evaluated by investigating the eigenpairs of the Galerkin projection on the space of quasi-
modes � h;sj .

Here, we simply compute, not only the �rst4, but the �rst 12 eigenvalues, with aQ10 -
approximation on uniform meshes of 4 to 64 elements, according to the value of1=h,
ranging from 1 to 90, with step 0:5. We present in Figure 9 the graph of these �rst
12 eigenvalues divided byh, vs. h� 1 . We observe that the eigenvalues interlace inside
clusters of four. The �rst cluster, converging to the value� 1(�= 2) ' 0:5099, is con-
tained in anexponential tube(materialized in the �gure by the dashed curves of equation
h� 1 7! 0:5099� 0:6 exp(� 0:5665h� 1=2) as a numerical representation of the asymptotics
(10)). The further clusters remain higher than� 0 ' 0:59.

We note that, sincePh is self-adjoint and its coef�cients depend analytically onh, its
eigenvalues can be organized to display ananalyticdependence onh in any interval disjoint
from 0. By a simple automatic postprocessing of the results, we follow eigenvalues as
families depending smoothly onh.

The multiple crossings between eigenvalues are corroborated by a closer look at the
eigenvectors: Tracking the symmetry properties of eigenvectors, it becomes obvious that
the crossings really occur. These oscillations are due to the magnetic �eld, and do not exist
in presence of an electric �eld alone.
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 sq (left). Zoom to the �rst cluster (right).

5 Other polygons

Let now 
 denote a general polygon with straight edges. The behavior of the lowest eigen-
values of the Neumann realizationPh of the operator� (hr � iA )2 on 
 ash tends to0
has, in a certain sense, the same features as previously.

Let � be the set of the verticess of 
 , and � s be the opening of
 at the vertexs.
As already seen in the case of the square, the spectrum ofPh is in close relation with the
spectra of the model operatorsQ� s for s describing the set of corners� .

5.1 Theoretical results

Let us suppose for sake of simplicity that, for any vertexs, the model operatorQ� s has at
most one eigenvalue� 1(� s) . This is the case for the examples we propose. From previous
computations, see Remark 3.3, it is enough that the openings� s are greater than�= 5. See
[10] for the general case.

Let � 1 be the set of verticess such that� 1(� s) < � 0 . From Remark 3.3 again,� 1

coincides with the set of convex vertices of
 .

Notation 5.1. � Let � h;n be then -th eigenvalue ofPh counted with multiplicity.
� Let � n be then -th element of the setf � 1(� s); s 2 � 1g.
� Let � be the minimum distance between two corners of
 .

Theorem 5.2. With Notation5.1, for any " > 0, there existsC" such that

j� h;n � h� n j � C" exp
�

�
1

p
h

�
�
p

� 0 � � n � "
� �

; 8n � N := #(� 1):

Thus, according to repetitions of the same value� in f � 1; : : : ; � N g, the corresponding
eigenvalues� h;n are gathered into clusters, exponentially close to the samevalueh� . It is
proved in [10] that the corresponding eigenvectors are exponentially close to linear combi-
nations of quasi-modes: Quasi-modes h;s are de�ned by translation, rotation, scaling, and

13



cut-off from the eigenvectors	 � s
1 for any s 2 � 1 like in Notation 4.1 for the square,

 h;s(x) = � s(x)
1

p
h

exp
�

i
2h

x ^ s
�

	 � s
1

�
R s(x � s)

p
h

�
:

Notation 5.3. � Using Notation 5.1, we denote byf � 1 < � � � < � M g the set of distinct
values inf � 1; : : : ; � N g.
� For anym � M , we de�ne them-th cluster of eigenspaces ofPh by

Fh;m = span
�

uh;n j 8n such that� n = � m
	

;

and the corresponding clusterFh;m of quasi-modes

Eh;m = span
�

 h;s j 8s 2 � 1 such that� 1(� s) = � m
	

:

Theorem 5.4. For any " � � , with � depending on the cut-off functions� s, there exists
C" > 0 such that for anym � M ,

d(Eh;m ; Fh;m ) � C" exp
�

�
1

p
h

�
�
p

� 0 � � m � "
� �

:

5.2 Rhombus and Trapezoid

We consider two examples of convex quadrilateral domains, arhombus
 rh with two pairs
of distinct openings, and a trapezoid
 tr without symmetry with two openings equal.

The corners of the rhombus
 rh ares1 = ( �
p

2=2; 0), s2 = (0 ; �
p

2), s3 = (
p

2=2; 0),
s4 = (0 ;

p
2). As illustrated in Figure 10, forh = 0 :02 the �rst two eigenvectors are

localized in the smallest openings, whereas the third and the fourth one are localized in the
largest openings. Because of symmetry, these eigenvectorsare localized in two corners and
not in one only.

Figure 10: Moduli of eigenvectors 1 to 4 in
 rh for h = 0 :02.

The corners of the trapezoid
 tr are s1 = ( � 1; � 1), s2 = (1 ; � 1), s3 = (1 ; 0), s4 =
(� 1; 1). Thus the openings ats1 and s2 are equal to�= 2. We show in Figure 11 the

14



�rst four eigenvectors forh = 0 :02. As expected, the corners are visited according to
increasing magnitude. An interesting difference from the symmetric case is the localization
of eigenvectors 2 and 3 in cornerss1 and s2 with quite different coef�cients. We have
noticed that the concentration in one corner only is stronger ash gets smaller. The pictures
of moduli in log10 scale (bottom) give another insight on thesupport of eigenvectors.

Figure 11: Moduli of eigenvectors 1 to 4 in
 tr for h = 0 :02.
Natural color scale (top) and logarithmic color scale (bottom)

The plots ofh� 1� h;n vs. h� 1 display two convergent two-element clusters for the rhom-
bus (note the values of� 1(� ) estimated by the method inx3 for the two different openings:
0:395 and 0:565), and three distinct limits for the trapezoid (note:� 1(� ) ' 0:434, 0:510
and 0:554). Eigenvalues interlace much less in the trapezoid, because of the absence of
symmetry.
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Figure 12:h� 1� h;n vs. h� 1 for 
 rh (left) and 
 tr (right).
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5.3 L-shape

The L-shaped domain
 L has six corners:s1 = (0 ; 0), s2 = (2 ; 0), s3 = (2 ; 1), s4 =
(1; 1), s5 = (1 ; 2), s6 = (0 ; 2). Thus it has 5 corners of same opening�= 2 and one
non-convex corner. The big �ve element cluster around� 1(�= 2) splits in fact in three
sub-clusters of 2, 1 and 2 elements, respectively, see Figure 14.

Figure 13: Moduli of eigenvectors 1, 3 and 5 in
 L , phase of eigenvector 1.
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Figure 14:h� 1� h;n vs. h� 1 for the L-shape
 L .

6 Curvilinear polygonal domains

If 
 is a curvilinear polygon, as proved in [10], we still have convergence of the eigenpairs
of Ph towards those of� s2 � 1 Q� s , but instead of being exponential, the convergence has the
rate

p
h. Nevertheless, clustering and tunnelling are still present if the domain is symmetric,

as shown on the curved square
 curv below. The opening of the angles of
 curv is equal
to 0:650� , corresponding to� 1(� ) = 0 :554. A geometrical interpolation of degree 4 has
been used for the design of the8 � 8 mesh.

From Figure 16, the slower convergence and weaker concentration of eigenvalues inside
their cluster are visible, when compared to the case of the square (see Figure 9).
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Figure 15: First eigenvector on the curved square
 curv (modulus and phase).
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Figure 16:h� 1� h;n vs. h� 1 , n = 1 ; : : : ; 12, in the curved square
 curv .

7 h-extension vs. p-extension

We now compare in a systematic way the performances of the h-extension (i.e. keep the
polynomial degree �xed and re�ne the mesh) with those of the p-extension (i.e. keep the
mesh �xed and increase the polynomial degree). All numerical experiments are carried with
the standard square
 sq centered at(0; 0) with side length2.

In x7.1 we keep the number of degrees of freedom (Dof) equal to 1600 and compare the
dependency on the small parameterh of eigenvalues computed with different combinations
of meshes and degrees. Inx7.2 andx7.3 the parameterh is set to0:02 and show errors for
h- and p-extensions, respectively.

7.1 Several combinations mesh-degree

We compute the �rst eight eigenvalues ofPh on the square
 sq for h� 1 = 10 to 60 by
step 0:5 with four different combinations of 1600 Dof:Q1 in a 40 � 40 mesh,Q2 in a
20� 20 mesh,Q5 in a 8� 8 mesh, and, �nally,Q20 in a 2� 2 mesh. We plot in Figures 17
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the �rst eight discrete eigenvalues divided byh, vs. h� 1 , and according to their smooth
dependency inh (like for Figure 9). And, like in Figure 9, for the same reason, we plot in
dashed lines the exponential tubeh� 1 7! 0:5099 � 0:6 exp(� 0:5665h� 1=2) . We recall
that we expect the �rst four eigenvalue cluster to concentrate inside this tube.
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Figure 17:h� 1� h;n vs. h� 1 for 1600 Dof

Besides the clearly visible better performance of high degree, two features are noticeable:
(i) While they are below1, the eight eigenvalues still gather into two clusters and interlace
with each other, and(ii) when eigenvalues get higher than1, they stick to this value and do
not oscillate any more.

7.2 h-extension with degree 1 and 2

The semi-classical parameterh is �xed to 0:02. The reference value is taken to0:50726621
for h� 1� h;1 , and is obtained withQ12-approximation on the8 � 8 mesh.

From Figure 18, we observe a preasymptotic convergence to1, followed by the asymp-
totic convergence towardsh� 1� h;1 . The preasymptotic convergence appears to be faster. A
closer look at the log-log plots of Figure 19 shows that the convergenceratesare similar:
If ` denotes the mesh size, the rates are approximately`2 and `4 for Q1 and Q2 , respec-
tively, but the errors behave likeC`2 and C`4 with a much largerC for the asymptotic
convergence than for the preasymptotic one.
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Figure 18:h� 1� h;1 vs. number of Dof per side forQ1 andQ2 -approximation.
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Figure 19: Relative errors for �rst eigenvalue, vs. number of Dof per side.
Errors wrt preasymptotic value1 (left), and to exact value0:50726621(right)

The structure of theses results evokes a possible crossing between two very different
modes. We display the portrait (modulus and phase) of the �rst eight eigenvectors computed
with a Q1 -approximation on a63� 63 mesh (i.e., the last one before the bifurcation point
of the Q1 curve, cf. Figure 18).

It is clear that modes 1, 2, 3, 5 and 8 are of different nature, and that modes 4, 6 and 7 are
somewhat closer to “true” modes 5-8, see Figure 8. These lessoscillating modes, especially
1-3, look like the �rstLandau modes

(X1; X2) 7�! (X1 + iX2)nexp
�

�
1
4

(X2
1 + X2

2)
�

;

for n = 0 ; 1; 2 and the scalingX = xp
h

. The Landau modes are a basis of the (in�nite
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50� h;1 = 1 :0016 50� h;2 = 1 :0046 50� h;3 = 1 :0093 50� h;4 = 1 :0130

50� h;5 = 1 :0154 50� h;6 = 1 :0156 50� h;7 = 1 :0219 50� h;8 = 1 :0232

Figure 20: Modes 1 to 8,h = 0 :02, Q1 -approximation on63� 63 mesh.
Moduli (top) and phases (bottom)

dimensional) eigenspace of the operator� (r � iA )2 in R2 , for thelowest Landau level,
that is,1.

Examining the sequence of the �rst 32 modes computed with theQ10-approximation on
the 8 � 8 mesh, we can see that some of them, especially 32, 31 and 30, also look like the
�rst three Landau modes (cf. Appendix A).

From the63 � 63 mesh to the64 � 64 mesh, we do observe crossings between modes:
For instance mode 4 becomes mode 1. Besides, the structure ofoscillating modes 4, 6 ad 7
produced with the63� 63 mesh is very close to that of exact modes.
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7.3 p-extension with coarse meshes

As in the previous section, the semi-classical parameterh is �xed to 0:02 and the reference
value is the same.
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Figure 21: Relative errors for �rst eigenvalue, vs. number of Dof per side.
Semi-logarithmic scale from10� 9 to 10 for errors. Integers mark polynomial degree.

We plot on separate curves the errors for each mesh, letting the degree vary. We still
notice a locking region, whereh� 1� h;1 converges to1 (which also corresponds to a relative
error ' 1). This region expands with the number of elements of the mesh. But, as a result,
with the same number of Dof the p-extension is far more precise than the h-extension.

8 Conclusion

Even with a size ratio equal to100 between the domain
 and the semi-classical parameter
h (this is the case for
 sq with h = 0 :02), the computation of the eigenpairs ofPh is a
numerical challenge for two reasons:(i) the double scale for the �rst eigenvectors, inducing
oscillations of wave lengthO(h) ,2 (ii) the presence of different asymptotic modes, possibly
less oscillatory, like the Landau modes.

In fact, depending on the position of the domain with respectto the gauge center, the
preasymptotic convergence will have quite different features: For a small enoughh �xed
like in the previous section, decreasing the mesh size with alow degree approximation
provides a preasymptotic concentration of the �rst mode around the gauge center. This
phenomenon has been observed in [25], too. Thus it is very useful to know the asymptotic

2The somewhat odd fact that the �rst mode is increasingly oscillating ash ! 0 has some similarity with
the situation of sensitive shells, see [12].
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behavior of eigenmodes before trying to compute them. This prevents to believe that the
�rst mode is approached as soon as a convergence appears.

From a more theoretical point of view, this rather simple, but very rich, example proves
the importance and the role of the global constantL `;p

h;n in estimates (1) and (2). The ca-
pability of approximating the �rst mode of the continuous problem isnot suf�cient for a
precise computation of its �rst eigenpair, cf. Figure 20. Inother words, we do not have the
strict analogue of Céa lemma for eigenpair approximation.Nevertheless, the obvious better
performances of p-extension over h-extension have some connection to the approximabil-
ity of oscillatory functions by high degree polynomials, better than by piecewise af�ne or
quadratic functions.

As a last remark, we notice the absence of in�uence of corner singularities for this prob-
lem: (i) eigenmodes are mainly supported outside non-convex corners and(ii) the effect
of singularities at convex corners will be felt after the oscillations are resolved (beyond a
relative error of10� 6 in Figure 21). The main role played by these oscillations, and the
fact that they spread everywhere in the domain makes it useless to re�ne meshes near cor-
ners. On the contrary,uniformmeshes have provided the most precise results regarding �ne
interactions between corners (the tunnelling effect).
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[10] BONNAILLIE -NOËL, V., AND DAUGE, M. Asymptotics for the low-lying eigenstates
of the Schrödinger operator with magnetic �eld near corners. to appear in Annales
Henri Poincaŕe (2006).
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181.
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Appendix A: The �rst 32 eigenpairs in the square for h = 0 :02.

Computed in
 sq with the Q10 -approximation on the8 � 8 mesh.

We give, for each computed eigenmode, its rankn , the value ofh� 1� h;n , the modulus and
the phase of a normalized eigenvector.

1: 0:50727 2: 0:50863 3: 0:51129 4: 0:51293

5: 0:62449 6: 0:63889 7: 0:64291 8: 0:66752

Figure 22: Modes 1 to 8, Modulus (top) and phase (bottom).
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9: 0:72106 10: 0:75019 11: 0:77995 12: 0:80027

13: 0:86274 14: 0:89110 15: 0:90457 16: 0:93835

17: 0:96564 18: 0:98089 19: 0:99023 20: 0:99516

Figure 23: Modes 9 to 20, Modulus (top) and phase (bottom).
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21: 0:99803552512 22: 0:99921135868 23: 0:99971288354 24: 0:99990258870

25: 0:99997317614 26: 0:99999318548 27: 0:99999852222 28: 0:99999972716

29: 0:99999996227 30: 0:99999999595 31: 0:99999999971 32: 0:99999999999

Figure 24: Modes 21 to 32, Modulus (top) and phase (bottom).
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Appendix B: Table of � 1( � ) vs. �

In the next two tables, in each column the integer numberj determines� by � = j�= 1000,
the real number besides is� 1(� ) .

1 0.0018138 41 0.073586 81 0.14141 121 0.20305 161 0.25773
2 0.0036275 42 0.075342 82 0.14303 122 0.2045 162 0.25901
3 0.0054411 43 0.077096 83 0.14465 123 0.20595 163 0.26029
4 0.0072544 44 0.078848 84 0.14627 124 0.20739 164 0.26155
5 0.0090675 45 0.080597 85 0.14788 125 0.20883 165 0.26282
6 0.01088 46 0.082343 86 0.14948 126 0.21027 166 0.26408
7 0.012693 47 0.084086 87 0.15108 127 0.2117 167 0.26534
8 0.014504 48 0.085826 88 0.15268 128 0.21313 168 0.26659
9 0.016316 49 0.087564 89 0.15428 129 0.21455 169 0.26784

10 0.018126 50 0.089298 90 0.15587 130 0.21597 170 0.26908
11 0.019936 51 0.09103 91 0.15745 131 0.21738 171 0.27032
12 0.021745 52 0.092758 92 0.15903 132 0.21879 172 0.27156
13 0.023554 53 0.094484 93 0.16061 133 0.22019 173 0.27279
14 0.025361 54 0.096206 94 0.16218 134 0.22159 174 0.27401
15 0.027168 55 0.097926 95 0.16375 135 0.22299 175 0.27524
16 0.028973 56 0.099642 96 0.16532 136 0.22438 176 0.27645
17 0.030777 57 0.10135 97 0.16688 137 0.22576 177 0.27767
18 0.03258 58 0.10306 98 0.16843 138 0.22715 178 0.27888
19 0.034382 59 0.10477 99 0.16999 139 0.22852 179 0.28009
20 0.036183 60 0.10647 100 0.17153 140 0.2299 180 0.28129
21 0.037982 61 0.10817 101 0.17308 141 0.23127 181 0.28248
22 0.03978 62 0.10987 102 0.17462 142 0.23263 182 0.28368
23 0.041576 63 0.11156 103 0.17615 143 0.23399 183 0.28487
24 0.043371 64 0.11325 104 0.17768 144 0.23535 184 0.28605
25 0.045164 65 0.11494 105 0.17921 145 0.2367 185 0.28723
26 0.046955 66 0.11662 106 0.18073 146 0.23805 186 0.28841
27 0.048745 67 0.1183 107 0.18225 147 0.23939 187 0.28958
28 0.050533 68 0.11997 108 0.18377 148 0.24073 188 0.29075
29 0.052319 69 0.12164 109 0.18527 149 0.24206 189 0.29192
30 0.054103 70 0.12331 110 0.18678 150 0.24339 190 0.29308
31 0.055885 71 0.12498 111 0.18828 151 0.24472 191 0.29424
32 0.057665 72 0.12664 112 0.18978 152 0.24604 192 0.29539
33 0.059443 73 0.12829 113 0.19127 153 0.24736 193 0.29654
34 0.061219 74 0.12995 114 0.19276 154 0.24867 194 0.29768
35 0.062993 75 0.1316 115 0.19424 155 0.24998 195 0.29882
36 0.064764 76 0.13324 116 0.19572 156 0.25128 196 0.29996
37 0.066533 77 0.13488 117 0.19719 157 0.25258 197 0.30109
38 0.0683 78 0.13652 118 0.19866 158 0.25387 198 0.30222
39 0.070064 79 0.13816 119 0.20013 159 0.25517 199 0.30335
40 0.071826 80 0.13978 120 0.20159 160 0.25645 200 0.30447

Table 2: � 1(j�= 1000) vs. j , j = 1 ; : : : ; 200, by step1.
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205 0.31001 405 0.4667 605 0.54346 805 0.57978
210 0.31546 410 0.46936 610 0.54476 810 0.58031
215 0.32081 415 0.47196 615 0.54604 815 0.58084
220 0.32607 420 0.47453 620 0.54729 820 0.58135
225 0.33123 425 0.47704 625 0.54852 825 0.58185
230 0.3363 430 0.47951 630 0.54973 830 0.58233
235 0.34129 435 0.48194 635 0.55092 835 0.58281
240 0.34618 440 0.48433 640 0.55208 840 0.58328
245 0.35098 445 0.48667 645 0.55323 845 0.58372
250 0.3557 450 0.48897 650 0.55435 850 0.58415
255 0.36034 455 0.49124 655 0.55545 855 0.58458
260 0.36489 460 0.49346 660 0.55653 860 0.58499
265 0.36936 465 0.49565 665 0.55758 865 0.5854
270 0.37375 470 0.49779 670 0.55862 870 0.5858
275 0.37806 475 0.4999 675 0.55964 875 0.58619
280 0.38229 480 0.50197 680 0.56064 880 0.58636
285 0.38645 485 0.50401 685 0.56161 885 0.58669
290 0.39053 490 0.50601 690 0.56257 890 0.58701
295 0.39454 495 0.50798 695 0.56351 895 0.58733
300 0.39848 500 0.50991 700 0.56443 900 0.58763
305 0.40235 505 0.5118 705 0.56533 905 0.58793
310 0.40614 510 0.51367 710 0.56622 910 0.58821
315 0.40987 515 0.5155 715 0.56708 915 0.5885
320 0.41354 520 0.5173 720 0.56793 920 0.58877
325 0.41713 525 0.51907 725 0.56876 925 0.58904
330 0.42067 530 0.52081 730 0.56957 930 0.58931
335 0.42413 535 0.52251 735 0.57037 935 0.58956
340 0.42754 540 0.52419 740 0.57115 940 0.58956
345 0.43089 545 0.52584 745 0.57191 945 0.58978
350 0.43418 550 0.52745 750 0.57265 950 0.59
355 0.4374 555 0.52904 755 0.57338 955 0.59024
360 0.44058 560 0.5306 760 0.57409 960 0.59049
365 0.44369 565 0.53214 765 0.57479 965 0.59077
370 0.44675 570 0.53364 770 0.57547 970 0.59113
375 0.44976 575 0.53512 775 0.57614 975 0.59149
380 0.45271 580 0.53658 780 0.57679 980 0.59143
385 0.45561 585 0.538 785 0.57743 985 0.59131
390 0.45846 590 0.5394 790 0.57805 990 0.59114
395 0.46125 595 0.54078 795 0.57865 995 0.59092
400 0.464 600 0.54213 800 0.57922 1000 0.59064

Table 3: � 1(j�= 1000) vs. j , j = 205; : : : ; 1000, by step5.
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