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Abstract

This paper is devoted to computations of eigenvalues aneheggtors for the
Schroddinger operator with constant magnetic eld in a domaith corners, as the
semi-classical parametbrtends to0. The eigenvectors corresponding to the smallest
eigenvalues concentrri\,te_ in the corners: They have a twe-sttacture, consisting of
a corner layer at scale h and an oscillatory term at scale. The high frequency
oscillations make the numerical computations particyldelicate. We propose a high
order nite element method to overcome this dif culty. Rélg on such a discretiza-
tion, we illustrate theoretical results on plane sectogsiases, and other straight or
curved polygons. We conclude by discussing convergenagesss

1 Introduction

Superconductivity theory, modeled by Ginzburg and Landaativates investigations of
the Schrodinger operator with magnetic eld and Neumanuangary conditions in two-
dimensional domains. The Schrodinger operatohr  iA)? derives from a linearization
of the Ginzburg-Landau functional and the behavior of igeaivalues and eigenvectors as
h! 0 gives information about the onset of superconductivityhim iaterial, seé 6] 7,113,
[14,[20[29] for the general framework and[[Z] 15,16 171822926 28] for more closely
related questions concerning the Schrodinger operator.

We give the mathematical framework we will work within: let denote a bounded
polygonal domain inR? and A the magnetic potentiaf( x»;x1) de ned on R?. We
investigate the behavior of the eigenpairs of the Neumaatizegion P, on  for the
Schrodinger operator (hr iA)2 ash ! 0. The variational space associated with
Ph is H1() and its domain is the subspace of functiansuch thatP,u 2 L?() and

(hr iA)Ju=0 on @ , with denoting the unit normal t@ .

Let us rst mention that the Schrodinger operafey is gauge invariant in the sense of
the following proposition:
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Proposition 1.1. Let 2 H?() ,thenu is an eigenvector associated with the eigenvalue
for the operator (hr  iA)2 ifand onlyifu := e’ u is an eigenvector associated
with the eigenvalue for the operator (r (A +r ))2.

In particular, the eigenvalues of the Schrodinger operate the same for any potential
A such thatcurl A = curl A. This allows the use of adapted gauges according to the
domain.

In [L0], a complete asymptotic expansion of low-lying eigites is exhibited for curvi-
linear polygonal domains and re ned results are proved endhse when the domain has
straight sides and the magnetic eld is constant. The eigetes have a two-scale structure,
in the form of the product of a corner layer at scalé with an oscillatory term at scale
h. The latter makes the numerical approximation delicAtposteriorierror estimates are
used in[[B[D] to determine localized mesh re nement in a l@grée nite element method.
We investigate here a nite element method using high degagnomials, as described in
Sectior 2.

Itis proved in [10] that the study of the Schrodinger operd, in a domain with corners
ofopenings 1,..., j,relies onthose of the Schrodinger opera@or:= (r  iA)? on
an in nite sector of opening ,for = 1;:::; ;. SectiorB is devoted to this operator:
We show computations which make theoretical results mangtete.

The next sections deal with the asymptotic behavior of tgereitates oP,, ash goes
to 0: We give numerical solutions which illustrate the clustgrof eigenvalues, depending
on the symmetries of the domain. Several particular polggdomains are investigated,
highlighting different points of the theory: Tunneling et for the square, concentration in
the lowest corners for the trapezoid, the rhombus or thedpstt domain. We end with a
curvilinear polygon for which the asymptotics is apprebjatifferent.

We conclude the paper in Sectibh 7 by numerical error curgeshie speci c case of
a standard square of length and h = 0:02. We compare the performances of “p-
extensions” (increasing the polynomial degree on a xed meand of “h-extensions”
(re ning the mesh with a xed degree). According to the magde of h, a locking phe-
nomenon is present, stronger and strongeh as 0. A disturbing feature of this locking
is the preasymptotic convergence to interior modes, cporading to the lowest Landau
level, signi cantly larger than the correct eigenvaluesur@onclusion is the necessity for
using “p-extensions” if we wish to capture ne effects likeettunneling effect in symmetric
domains.

2 General results on eigenvalue approximation

In the sequel, we will show numerical results of spectrarapipations for the Schrodinger
operator in various domains. We wish rst to recall somedamt the numerical computa-
tion of eigenvalues and eigenvectors by a nite element (kalanethod, which serve as a
basis to justify the relevance of our results.

Let us x some notation:

h:n IS then-th eigenvalue of the operat®t;, ,



Unn IS @ normalized associated eigenfunctionvire H()

(T )s o is a family of quadrilateral meshes, whereis the maximum size of the
elements (we changed the traditiomainto ~ since the letteh already stands for the
small semi-classical parameter),

Qp is the standard space of polynomials of partial degree the reference square
element,

V P is the conforming discrete variational space associatéd the Qp-reference
square element on the mesh,

( h'?] ; uh'?]) is the n-th discrete eigenpair d®y, in V P
Z ~ —_— ~ Z ~
(hr AR (hr PA)Vdx= B uP vdx; 8v2VviP:

n n

For the rst eigenpair (0 = 1) or, more generally, if p.n 6 1. 1, itis known from [4[5,
[17] that the following Céa-like estimate holds

i hn Wb LR osup inf ku o KZ; )
' " u2Mp, 2V

whereMy,, is the set of normalized eigenvecB&ssociated With p-n andL;j.pn a positive
constant which, for each xedh > 0O andn 2 N, isboundedas ! 0 or p'1l
Moreover the corresponding estimate for eigenvectorsste@tiere exists an eigenvector
tm:n associated with ., satisfying

Kenn U ky LR Jsupinf ku ky: 2
h;n

Thus discretization errors on the eigenpairs are essignbalnded by the best approx-
imation errors on the eigenvectors Bf,. We have to keep in mind that the latter closely
depends on the semi-classical paraméter

In the following, we will interpret the Galerkin approximas obtained for the eigen-
pairs, with respect to the asymptotic results[ofi [10]. We kasize the fact that, since by
constructionV:? V , the computed eigenvalues will always geeater than the exact
eigenvalue of same rank.

All the results displayed in this paper have been obtaindt thie Finite Elements Li-
brary Mélina, se€ [27]. Computations are mostly done wigttg coarse meshes (consisting
of less than100 quadrilaterals), but with high polynomial degreB0(in general, referred
to asQ1p-approximation). We justify our choice of a “p-extensioniHere the degrep of
polynomials is increased), rather than a “h-extension”dmltthe size of the elements is
decreased), by the fact that — for the same number of degfdemedom — a p-extension
captures oscillations more accurately than a h-extensiea|[1/2R["23] for related ques-
tions concerning the Helmholtz equation and dispersioaticels at high wave number.
This point is discussed in more detail in Seclibn 7.

Lif hn = hn 1,thesetMy, has to be modi ed accordingly.



3 Model operators in in nite sectors

This section is devoted to the study of the Schrodingeraiper (r  iA)? in an in nite
sector: The analysis of the operatBy in a bounded domain with corners relies on this
model situation. We rst recall some theoretical resultsnfr[8] concerning the spectrum
of the operator and, next, we show some numerical experanghich illustrate some of
these results or give hints on how to extend them.

3.1 Theoretical results on sectors

We denote byX = ( X1;X») the Cartesian coordinates R?, and byR = jXj and the
polar coordinates. LeB be the sector iflR? with opening

G =fX2R% 2(0 )g
andQ be the Neumann realization of the Schrodinger operaigr iA)? on the sector
G . With the potentialA (X) = %( X2; X1), the operatoiQ takes the form
. 1.

Q= + iX@ X@,)+ ZiX*
The operatolQ is associated with the following variational space
Vo= 2L%G ) (r BA) 2LAG) ;i i =i dife i iA) it

We denote by ( ) the k-th smallest element of the spectrum given by the max-min

principle. We quote some results 0f [8] about the spectrui® of

Theorem 3.1.
(i) The in mum of the essential spectrum@f isequalto ¢:= 1( ).
(iForall 2 (0; =2], 1( ) < o and, therefore, 1( ) is an eigenvalue.

(i) Let 2 (0;2 ) andk 1.Let , be an eigenfunction associated witQ( ) < o
for the operatorQ . Then | satis es the following exponential decay estimate:

P—— .
8">0,9C, >0, e ©° O C 3)
(iv) Forall 2 (0; 1,
1
o a0 g (4)
3
and there holds 1
1()!p—§as IO (5)

Remark 3.2. Using the same technique &$ [8], one can establish asyegptitithek -th
eigenvalue as ! 0, similar to [3):

k( )! 2kp+_1 as I 0 (6)
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3.2 Numerical experiments on sectors

We present here some results of numerical computations eofaili-lying eigenvalues,
which illustrate the estimateEl (4[] (5) arid (6). Furthemmoar allows to investigate the
monotonic behavior of ( ) with respect to the opening.

The method we have used to compute approximations of thengilygees consists in a
high order nite element method, using quadrilateral elatseand tensor-product polyno-
mials of degre€l0. Let us explain the way we deal with the unboundedness ofdheadh:
For a given , we mesh a bounded cornered stripof opening , see Figur&ll, and, for
any h > 0, we consider the scaled operafQf,, denedon! as

Qn, = (hr iA)*% ©)

©
NI

|
|
{1
I

Figure 1: Meshes on cornered strips fo=0:1; 0:35; 0:75 .

By dilatation, the eigenvalues of the opera@y., ., are the same as those Q%
divided by h. Consequently, taking the decay of eigenvectors into atcave recover the
eigenvalues of) on the in nite sectorG atthe limith ! 0. This formulation offers the
advantage to be consistent with the analysis in the nexbssdor bounded domains.

1.00

_‘(‘

0.00

Figure 2: Moduli of the rst eigenfunction for =0:1; 0:35; 0:75 .

To ensure that the eigenvalues in the in nite sector are @pprated from above, we
impose Dirichlet boundary conditions on the edged ofvhich differ from the boundary

5



of G (keeping natural Neumann conditions elsewhere). The ehoianeshes such as
in Figure[l is justi ed by the localization of the eigenvexgaiven in Theoreri 3 1. This
exponential concentration is illustrated in Figlite 2: Weenihat the behavior of the rst
eigenvector changes when the opening increases. Indee, twd opening is small (e.g.,

=10 like in the left picture of Figur&l2), the eigenvector apsetir be essentially
radial, in coherence with asymptotics ag§ 0. When the opening increases, the modulus
of the eigenvector spreads out along the boundary (seepighire of FigurdR). Conse-
quently, we realize computations with two different mesaesording to the opening (the
mesh on the right of Figuld 1 is re ned near the edges whereitfenvector is expected to
be mostly supported).

3.2.1 Asymptoticsof ¢( )as ! O

In order to increase the accuracy of the approximation oktgenvalues for small angles,
we introduce a gauge transform which leads to the poteAt{a) = (  x»;0). The result-
ing operatorQ = (r  iA)? has the same spectrum th@n , as explained in Propo-
sition[IJ. The relevance of such a transform is linked toammplitude of the potential:
for small openings , A is smaller thanA in the considered domain. We expect a better
approximation forQ than forQ since the associated eigenvectors are less oscillating.
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In Figure[3, we present numerical computations @f ) for k = 1; ; 7and 2



capture very precisely the asymptotics af( ) given in [8) as soon as the parameleis
small. This is a consequence of the behavior of the eigeorserdcalled in Theorem3.1: the
eigenfunctions are localized near the corner and are exyiaiig small far from the corner.
Consequently, the leds, the less information we lose, and the better the approidmatf
the eigenpairs.

The improvement of the approximation for small angles isicia Figured3, whereas
the situation seems to be the reverse for larger values. dhdeed, the eigenvalues being
approximated from above, the results for = 10 are deteriorating for smahi. This phe-
nomenon can be explained by the fact that we keep the sameenaindlements to capture
higher oscillations: the mesh is too coarse to approximetarately the eigenfunctions.

3.2.2 Monotonicity of 7! 1( )

Let us now focus on the rst eigenvalue. We have observed sgenptotic behavior[{4) as
' 0 in Figure[® for 2 (0; =5). Figure[® gives computations for 2 (0; ) with a

values ofh between10 # and 0:5 and three magnetic potentiaks(x) = %( X2;X1)
(symmetric gauge)®(x) = ( x»;0) and /b(x) = (0;x1) (Landau gauges). According
to Propositior 11, the Schrodinger operator associatdutiese three potentials have the
same spectrum and the eigenvectors can be easily deducéwonine other. We show in
Figure[3 the effect of the gauge on the phase of the rst eigetor. The potential® is
better adapted for small openings{ = 10), the potential/b is more convenient for large
openings (> 19=20) since the eigenvector is localized in the corner and alsogthe
Neumann boundary. For the other openings, the poteAtiglves better results.

Figure 4: Phases of rst eigenvector for gauges &, A,

The curve in Figur&l5 plots the minimum value obtained froeséhcon gurations for
any opening. We have also represented on the graph the bofttre essential spectrum

o' 0:5901 and the lower and upper bounds givenlih (4). Since the nualezitimates
for the bottom of the spectrum give an upper-bound ¢f ), we are ensured that;( ) <

obtained for = j = 40. The comparison between the numbers obtained Qi¢landQ1o-



approximations provides an accuracy estimation for theprded eigenvalues. Numerical
experiments for 2 [; 6 =5] do not show eigenvalue less thary with similar meshes as
in Figure[d.

e
e

oab e ]

—— Essential spectrum

| = Upper bound

—— Lower bound
Numerical estimates

0.Lf /s

0.2

0.4

0.6

0.8

Figure 5: 1( ) vs. — for

21[0; 1.

—

1 Jag

Qo

Q10

j

1 Jag

Qo

Q1o

1 Jag

Qo

Q1o

Boo~v~oouobrwNnp
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0.27524
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0.37806
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0.41713
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0.04514
0.0893(
0.1316(
0.17153
0.20883

0.24339

0.27524
0.30447
0.33123
0.3557(

0.37806
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0.41713
0.4341¢

0.44976¢
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16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

0.46400
0.47704
0.48898
0.49990
0.50991
0.51907
0.52745
0.53512
0.54213
0.54853
0.55435
0.55965
0.56445
0.56880
0.57272

0.46400
0.47704
0.48897

0.4999(

0.50991
0.51907
0.5274%

0.53517
0.54213

0.54852
0.5543%

0.55964
0.56443
0.5687¢
0.5726%
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31
32
33
34
35
36
37
38
39
40

0.57623
0.57924
0.58193
0.58430
0.58632
0.58819
0.58997
0.59030
0.60130
0.59087

0.57614
0.57927

0.5818%

0.5841%
0.5861¢
0.58763
0.58904
0.5900(
0.59144
0.59064

= OO0 &GO

Table 1: Numerical values for the bottom of the spectrum.



Remark 3.3. Considering the results in Figurk 5, we conjecture thais strictly increasing
from (0; ] onto (0; o], equalto o on[; 2 ] andthat 9 ) = 0. Furthermore, from
the results in FigurEl 3 it appears that there is only one gaea 1( ) below the essential
spectrum for 2 (=5; ).

4 Square

We consider here the Schrodinger operd®gr= (hr  iA)?2 with Neumann boundary
conditions on the model squaresq = ( 1;1) ( 1;1), and the rangd to 0:01 for the
parametenh.

4.1 Theoretical results

Wedenote by, =( 1, 1),=(1; 1),s3=(1;1),ss=( 1,1) the vertices of .
The analysis of the eigenpairs Bf, on the square ts in the framework of more general
polygonal domains, studied iAi10]. We give here a speci edsion of the results, which
takes into account the symmetry properties of the square.

Relying on Remark=3]3, we admit that there is only one eigeeva;( = 2) below
for the operatoQ = 2 on the quarter plane and thaf( = 2) is simple. Corresponding to the
4 corners of the square, the rek eigenpairs ofP, derive from4 quasi-modegenerated
by the eigenpair 1( =2); f 2 onthe quarter plane:

Notation 4.1. Let ., be then-th eigenvalue oPy counted with multiplicity andup.,
be a normalized eigenfunction associated wity, .
We introduce the surfr, of the rst 4 eigenspaces d®y :

Fh = span Un;1; Un;2; Un;3; Un;4 !
We de ne the corresponding spaég, of quasi-modes
Eh=span nhs; hs hss  his
generated by thd functions .5 de ned as follows: Letj 2 f 1;2;3;4g andR; be the
rotation of openingj 1) =2. We rst de ne the function .5 by

2 Rj(x §)

(0= pmep oxty o2 B3N o RileT2 @

h 2h
and set
h;s x)=j(x) h;s (x) on sq- 9)
Here ; is aradial smooth cut-off function with support in the bBl(s ; 2) and equal tdl
inB(s;2 ) for some positive .

The quasi-modes .5 allow to compare the eigenvalues B} with those ofQ ~ 2- the
distance between the clustes, and Fy, can be quanti ed as well. The results 6f]10]
applied to the situation of a square give the estimates:



Proposition 4.2. With Notation], for any " > 0, there existC- > 0 such that for
n=1;234,

o 9 —— 1
2 o 13 "
nn h1 = Coexp@ — A (10)
2 h
Furthermore, for any'
o 9 — 1
2 o 13 "
d(En;Fn) Crexp@ Pﬁ 2 A

whered is the distance de ned byl(En; Fp) = jj g, Fn Enlin; With g, and g,
the orthogonal projections ont&y, and Fy, respectively.

Consequently the eigenvectors associated with the smfdieseigenvalues oPy, are
exponentially close to a linear combination of the four dumasdes his » j =1:;2,3,4.
Numerical experiments show that these combinations ar&ivial. Furthermore, this the-
orem also proves that the smallest four eigenvalud?,diorm aclusterexponentially close
to h 1( =2). Numerical experiments bring more information about thiedver of these
eigenvalues, and display ne interactions. Moreover, @lfh no theoretical results are
available for eigenvalues of rank larger than 5 (except #ue that they cannot converge
below ' 0:59), we will see that they also organize into clusters of 4.

In the following, when representing eigenmodes, we showr theduli and, most often,
their phases. The phase is computed according to the foranatan(Im (z)=5zj) .

4.2 Dependency orh of the rst eigenfunction

Formula [B) exhibits a two-scale Igtructure for the quasdeso a corner layer at s_ca‘ljeﬁ
coming from the dilatation ; °(= h), and an oscillatory term at scatedue toezv*"s.
Relying on Propositioi 412, the same holds for the functiartee eigenspac&y, . Conse-
quently, especially because of harsh oscillations, theeedif cult issue of approximating
correctly the eigenfunctions d¢¥, for small values oh.

We present as a conclusion of this paper in Sedfion 7 a systeimaestigation of errors
when discretizing our problem on the square thanks to hasidas with bilinear elements,
or to p-extensions with coarse mesheddb 64 elements. In this section, we choose each
time an optimal combination mesh-degree to display eigel@so

To compute the rst eigenfunction fdn = 0:1, 0:08, 0:06, 0:04, 0:02, 0:01, we keep
the polynomial approximation xed t@Q10 and a8 8 mesh. Figur&l6 gives the modulus
of the rst eigenfunction and Figulld 7 its phase. As expectesl observe that the modulus
is more and more concentrated in the corners and phase hagisbacillations wherh
decreases.
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0.00

Figure 6: Moduli of the rst eigenfunctionh = 0:1; 0:08; 0:06; 0:04; 0:02; 0:01.
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Figure 7: Phases of the rst eigenfunctiom,= 0:1; 0:08;, 0:06; 0:04; 0:02 0:01.

4.3 Dependency on the rank of eigenfunctions for a given vaéuof h

In FiguredB we keefln = 0:02 xed and compute the eigenfunctions associated with the
smallest eight eigenvalues &%,. We observe that the eigenvectors associated with the
smallest four eigenvalues are localized in the four corasrpredicted by Propositidn #.2,
and that, moreover, each one is present in all the four cerasrcan be predicted by symme-
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try arguments. There is no theoretical results for the nigdrgairs, but the computations
show a localization of the eigenvectors along the edgeseoédfuare.

The full portrait (modulus and phase) of the rst 32 modes barfound in Appendix A.

Figure 8: Moduli of the rst 8 eigenfunctionsd) = 0:02.

4.4 Tunneling effect

Thetunneling effectefers to the interaction between symmetric potential syelee [21]
for instance. In our situation, the tunneling effect apptie corners of the same aperture. If
present, this effect is an interaction of eigenvalues s#ie same cluster, possibly stronger
than the convergence of the whole cluster to its asymptond.| It could be formally
evaluated by investigating the eigenpairs of the Galerkajegation on the space of quasi-
modes s -

Here, we simply compute, not only the rgf, but the rst 12 eigenvalues, with &1¢-
approximation on uniform meshes of 4 to 64 elements, acogrth the value ofl=h,
ranging from1 to 90, with step 0:5. We present in Figure 9 the graph of these rst
12 eigenvalues divided by, vs. h 1. We observe that the eigenvalues interlace inside
clusters of four. The rst cluster, converging to the valug( =2) ' 0:5099, is con-
tained in anexponential tubématerialized in the gure by the dashed curves of equation
h 17105099 0:6exp( 0:5665h 72) asanumerical representation of the asymptotics
(10)). The further clusters remain higher thag ' 0:59.

We note that, sincé, is self-adjoint and its coef cients depend analytically bnits
eigenvalues can be organized to displagaalyticdependence oh in any interval disjoint
from 0. By a simple automatic postprocessing of the results, wleviokigenvalues as
families depending smoothly dn

The multiple crossings between eigenvalues are corragmbriay a closer look at the
eigenvectors: Tracking the symmetry properties of eigetors, it becomes obvious that
the crossings really occur. These oscillations are dueetonifgnetic eld, and do not exist
in presence of an electric eld alone.
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Figure 9:h 1 o vs.h 1,n=1;:::;12in sq (left). Zoom to the rst cluster (right).

5 Other polygons

Letnow denote a general polygon with straight edges. The behafibedowest eigen-
values of the Neumann realizatid®, of the operator (hr  iA)2 on ash tends toO
has, in a certain sense, the same features as previously.

Let be the set of the verticesof , and ¢ be the opening of at the vertexs.
As already seen in the case of the square, the spectruPq @ in close relation with the
spectra of the model operatos s for s describing the set of corners.

5.1 Theoretical results

Let us suppose for sake of simplicity that, for any verggxhe model operato® s has at
most one eigenvalue;( ). This is the case for the examples we propose. From previous
computations, see Remark 3.3, it is enough that the openiggse greater than=5. See

[10] for the general case.

Let 1 be the set of vertices such that 1( s) < . From Remark 3.3 again, ;
coincides with the set of convex vertices of

Notation 5.1.  Let j., be then-th eigenvalue oPy counted with multiplicity.
Let , bethen-th element of the sdt 1( ¢); s2 1g.
Let be the minimum distance between two corners of

Theorem 5.2. With Notation5.1, for any" > 0, there exist€C- such that

. . i1 P—
jnn hoaj Crexp Ps o n " 5 81 N=# )
Thus, according to repetitions of the same valuan f 1;:::; N, the corresponding

eigenvalues ., are gathered into clusters, exponentially close to the saoeh . Itis
proved in [10] that the corresponding eigenvectors are mapibally close to linear combi-
nations of quasi-modes: Quasi-modesgs are de ned by translation, rotation, scaling, and
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cut-off from the eigenvectors ;° foranys?2 1 like in Notation 4.1 for the square,

Rs(X 9

1 i
ns() = X Pmexp xts g TP

2h
Notation 5.3.  Using Notation 5.1, we denote Hy 1 < < wm g the set of distinct
valuesinf 1;:::; NO.
Foranym M , we de ne them-th cluster of eigenspaces Bf, by
Fh.m = span up.y, j 8n suchthat n = 5 ;
and the corresponding clustBp., of quasi-modes

Ehm = span psj 852 1 suchthat 1( s)= m :

Theorem 5.4. For any " , with  depending on the cut-off functions;, there exists
C+ > Osuchthatforanyn M,

1 -
d(En:m ;Fhm) Crexp p_ﬁ 0 m

5.2 Rhombus and Trapezoid

We consider two examples of convex quadrilateral domainsombus , with two pairs
of distinct openings, and a trapezoid, without symmetry with two openings equal.

The cagners of the rhombus;, ares; = ( P 2=2;0), s =(0; P 2), 3= (p 2=2:0),
s = (0; 2). As illustrated in Figure 10, foh = 0:02 the rst two eigenvectors are
localized in the smallest openings, whereas the third aadairth one are localized in the
largest openings. Because of symmetry, these eigenveniscalized in two corners and
not in one only.

Figure 10: Moduli of eigenvectors 1 to 4 iny, for h = 0:02.

The corners of the trapezoidy ares; = ( 1, 1), =(1; 1),s3=(1;0), 4=
( 1;1). Thus the openings a; and s, are equal to=2. We show in Figure 11 the
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rst four eigenvectors forh = 0:02. As expected, the corners are visited according to
increasing magnitude. An interesting difference from Wmmmetric case is the localization
of eigenvectors 2 and 3 in cornesg and s, with quite different coef cients. We have
noticed that the concentration in one corner only is stroagé gets smaller. The pictures
of moduli in log10 scale (bottom) give another insight on sheport of eigenvectors.

Figure 11: Moduli of eigenvectors 1 to 4 ing for h = 0:02.
Natural color scale (top) and logarithmic color scale (bmtt)

The plots ofh ! 1., vs. h 1 display two convergent two-element clusters for the rhom-
bus (note the values of;( ) estimated by the method 3 for the two different openings:
0:395 and 0:565), and three distinct limits for the trapezoid (notej( ) ' 0:434, 0:510
and 0:554). Eigenvalues interlace much less in the trapezoid, becatithe absence of
symmetry.

11 11

0.9 0.9

0.8 0.8
0.7 0.7
0.6 0.6 \’\K

0.5 0.5

04— 0.4

0.3 0.3

0.2 0.2

Figure 12:h 1 ., vs.h 1 for , (leftyand ¢ (right).
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5.3 L-shape

The L-shaped domain | has six cornersss; = (0;0), s, = (2;0), s = (2;1), 4 =
(1;1), s =(1:;2), s = (0;2). Thus it has 5 corners of same openirg2 and one
non-convex corner. The big ve element cluster around = 2) splits in fact in three
sub-clusters of 2, 1 and 2 elements, respectively, seed-igur

Figure 13: Moduli of eigenvectors 1, 3 and 5 in , phase of eigenvector 1.

03f -~

0.2
10 20 30 40 50 60

Figure 14:h 1 ., vs. h 1 for the L-shape |.

6 Curvilinear polygonal domains

If isacurvilinear polygon, as proved in [10], we still have wargence of the eigenpairs

of Py, towards those of i ,Q ¢, butinstead of being exponential, the convergence has the
rate. h. Nevertheless, clustering and tunnelling are still preéne domain is symmetric,

as shown on the curved squarg,, below. The opening of the angles of, is equal

to 0:650 , corresponding to 1( ) = 0:554. A geometrical interpolation of degree 4 has
been used for the design of tBe 8 mesh.

From Figure 16, the slower convergence and weaker contientief eigenvalues inside
their cluster are visible, when compared to the case of tharsqsee Figure 9).

16



Figure 15: First eigenvector on the curved squagg., (modulus and phase).
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7 h-extension vs. p-extension

We now compare in a systematic way the performances of théemsion (i.e. keep the
polynomial degree xed and re ne the mesh) with those of thextension (i.e. keep the
mesh xed and increase the polynomial degree). All numészaeriments are carried with
the standard squaresq centered af0; 0) with side length2.

In x7.1 we keep the number of degrees of freedom (Dof) equal t0 46d compare the
dependency on the small parameheof eigenvalues computed with different combinations
of meshes and degrees.Xn.2 andx7.3 the parameten is set t00:02 and show errors for
h- and p-extensions, respectively.

7.1 Several combinations mesh-degree
We compute the rst eight eigenvalues Bf, on the square sq for h 1'=10 to 60 by

step 0:5 with four different combinations of 1600 DofQ; in a 40 40 mesh,Q, in a
20 20mesh,Qsina8 8 mesh, and, nally,Q,p ina2 2 mesh. We plot in Figures 17
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the rst eight discrete eigenvalues divided by vs. h 1, and according to their smooth
dependency irh (like for Figure 9). And, like in Figure 9, for the same reasam plot in
dashed lines the exponential tune® 7! 0:5099 0:6exp( 0:5665h 172). We recall
that we expect the rst four eigenvalue cluster to conceatmaside this tube.

0.3 1600 elements, Q1 0.3 400 elements, Q2

“10 20 30 40 50 60 “10 20 30 40 50 60

0.3 64 elements, Q5 0.3 4 elements, Q20

“10 20 30 40 50 60 “10 20 30 40 50 60

Figure 17:h 1 1., vs. h 1 for 1600 Dof

Besides the clearly visible better performance of high éegtwo features are noticeable:
(i) While they are belowd, the eight eigenvalues still gather into two clusters aneriace
with each other, an¢li) when eigenvalues get higher thanthey stick to this value and do
not oscillate any more.

7.2 h-extension with degree 1 and 2

The semi-classical parameteris xed to 0:02. The reference value is taken@®b0726621
forh 1 1.1, and is obtained witlQ,-approximation on th@ 8 mesh.

From Figure 18, we observe a preasymptotic convergende fimlowed by the asymp-
totic convergence towards ! .. The preasymptotic convergence appears to be faster. A
closer look at the log-log plots of Figure 19 shows that theveogencaatesare similar:

If * denotes the mesh size, the rates are approximatefnd *# for Q; and Q., respec-
tively, but the errors behave lik€*? and C** with a much largerC for the asymptotic
convergence than for the preasymptotic one.
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Figure 18:h 1 1.1 vs. number of Dof per side fo®; and Q-approximation.

0 ——Q1 0 PN

107

10°

-3
10 o1
——Q2

10* 10° 10" 10

Figure 19: Relative errors for rst eigenvalue, vs. numbEbDof per side.
Errors wrt preasymptotic valué (left), and to exact valu®:50726621(right)

The structure of theses results evokes a possible crossiwgeen two very different
modes. We display the portrait (modulus and phase) of theeight eigenvectors computed

with a Q4 -approximation on &3 63 mesh (i.e., the last one before the bifurcation point
of the Q1 curve, cf. Figure 18).

Itis clear that modes 1, 2, 3, 5 and 8 are of different naturd that modes 4, 6 and 7 are

somewhat closer to “true” modes 5-8, see Figure 8. Thesesedtating modes, especially
1-3, look like the rstLandau modes

, 1
(X1iX2) 7! (Xa+ iXo)"exp  Z(Xi+ X) ;

for n = 0;1;2 and the scalingk = px—ﬁ The Landau modes are a basis of the (in nite
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50 p1=1:0016  50p.,=1:0046  50p43=1:0093 504 =1:0130

50 p5=1:0154 50 p.6=1:0156  50p.7=1:0219 505 =1:0232

Figure 20: Modes 1 to & = 0:02, Q;-approximation or63 63 mesh.
Moduli (top) and phases (bottom)

dimensional) eigenspace of the operatqfr  iA)? in R?, for thelowest Landau level
thatis, 1.

Examining the sequence of the rst 32 modes computed withQhg-approximation on
the8 8 mesh, we can see that some of them, especially 32, 31 ands8dpak like the
rst three Landau modes (cf. Appendix A).

From the63 63 mesh to the64 64 mesh, we do observe crossings between modes:
For instance mode 4 becomes mode 1. Besides, the structaseitbéiting modes 4, 6 ad 7
produced with theé63 63 mesh is very close to that of exact modes.
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7.3 p-extension with coarse meshes

As in the previous section, the semi-classical parantetisr xed to 0:02 and the reference
value is the same.

—e—1 element
0
10 —A— 4 elements
—v— 16 elements
64 elements
107}
10}
10°f 5
10
108} 11
0 20 40 60 80 100

Figure 21: Relative errors for rst eigenvalue, vs. numbEbDof per side.
Semi-logarithmic scale fromi0 ° to 10 for errors. Integers mark polynomial degree.

We plot on separate curves the errors for each mesh, letimglégree vary. We still
notice a locking region, where * 1.1 converges td (which also corresponds to a relative
error' 1). This region expands with the number of elements of the mBat) as a result,
with the same number of Dof the p-extension is far more peettian the h-extension.

8 Conclusion

Even with a size ratio equal tb00 between the domain and the semi-classical parameter
h (this is the case for sq with h = 0:02), the computation of the eigenpairs Bf, is a
numerical challenge for two reasor(:the double scale for the rst eigenvectors, inducing
oscillations of wave lengtiD(h) ,2 (i) the presence of different asymptotic modes, possibly
less oscillatory, like the Landau modes.

In fact, depending on the position of the domain with respedhe gauge center, the
preasymptotic convergence will have quite different feedu For a small enough xed
like in the previous section, decreasing the mesh size wittwadegree approximation
provides a preasymptotic concentration of the rst modeuatbthe gauge center. This
phenomenon has been observed in [25], too. Thus it is verfyluseknow the asymptotic

2The somewhat odd fact that the rst mode is increasinglyltiig ash | 0 has some similarity with
the situation of sensitive shells, see [12].

21



behavior of eigenmodes before trying to compute them. Thasemts to believe that the
rst mode is approached as soon as a convergence appears.

From a more theoretical point of view, this rather simplet, \ary rich, example proves
the importance and the role of the global constbp'.’ﬁ] in estimates (1) and (2). The ca-
pability of approximating the rst mode of the coritinuousobrem isnot suf cient for a
precise computation of its rst eigenpair, cf. Figure 20.other words, we do not have the
strict analogue of Céa lemma for eigenpair approximatidevertheless, the obvious better
performances of p-extension over h-extension have someection to the approximabil-
ity of oscillatory functions by high degree polynomialsttee than by piecewise af ne or
quadratic functions.

As a last remark, we notice the absence of in uence of corimgutarities for this prob-
lem: (i) eigenmodes are mainly supported outside non-convex coaret(ii) the effect
of singularities at convex corners will be felt after the ibattons are resolved (beyond a
relative error of10 © in Figure 21). The main role played by these oscillations) tre
fact that they spread everywhere in the domain makes it ssébere ne meshes near cor-
ners. On the contrargniformmeshes have provided the most precise results regarding ne
interactions between corners (the tunnelling effect).
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Appendix A: The rst 32 eigenpairs in the square for h =0 :02.

Computed in sq with the Q1gp-approximation on thé8 8 mesh.

We give, for each computed eigenmode, its rankhe value ofh 1 ., the modulus and
the phase of a normalized eigenvector.

1: 0:50727 2: 0:50863 3: 0:51129 4: 0:51293

5: 0:62449 6: 0:63889 7:0:64291 8: 0:66752

Figure 22: Modes 1 to 8, Modulus (top) and phase (bottom).
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9: 0:72106 10: 0:75019 11: 0:77995 12: 0:80027

13: 0:86274 14: 0:89110 15: 0:90457 16: 0:93835

17: 0:96564 18: 0:98089 19: 0:99023 20: 0:99516

Figure 23: Modes 9 to 20, Modulus (top) and phase (bottom).
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21:0:99803552512 22:0:99921135868 23:0:99971288354 24:0:99990258870

25:0:99997317614 26:0:99999318548 27:0:99999852222 28: 0:99999972716

29:0:99999996227 30: 0:99999999595 31:0:99999999971 32: 0:99999999999

Figure 24: Modes 21 to 32, Modulus (top) and phase (bottom).
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Appendix B: Table of 1( ) vs.
In the next two tables, in each column the integer numbaetermines by = j = 1000,
the real number besides is( ).
1 0.0018138|| 41 0.073586|f 81 0.14141|| 121 0.20305|| 161 0.25773
2 0.0036275|| 42 0.075342|| 82 0.14303|| 122 0.2045 || 162 0.25901
3 0.0054411f 43 0.077096|| 83 0.14465|| 123 0.20595|| 163 0.26029
4 0.0072544| 44 0.078848| 84 0.14627| 124 0.20739|| 164 0.26155
5 0.0090675|| 45 0.080597|| 85 0.14788|| 125 0.20883|| 165 0.26282
6 0.01088 46 0.082343|| 86 0.14948|| 126 0.21027|| 166 0.26408
7 0.012693 || 47 0.084086|| 87 0.15108| 127 0.2117 || 167 0.26534
8 0.014504 || 48 0.085826|| 88 0.15268|| 128 0.21313]| 168 0.26659
9 0.016316 || 49 0.087564|| 89 0.15428|| 129 0.21455|| 169 0.26784
10 0.018126 || 50 0.089298| 90 0.15587| 130 0.21597|| 170 0.26908
11 0.019936 || 51 0.09103 91 0.15745|| 131 0.21738|| 171 0.27032
12 0.021745 || 52 0.092758|| 92 0.15903|| 132 0.21879|| 172 0.27156
13 0.023554 || 53 0.094484|| 93 0.16061|| 133 0.22019| 173 0.27279
14 0.025361 || 54 0.096206|| 94 0.16218|| 134 0.22159| 174 0.27401
15 0.027168 || 55 0.097926|| 95 0.16375| 135 0.22299|| 175 0.27524
16 0.028973 || 56 0.099642|| 96 0.16532|| 136 0.22438|| 176 0.27645
17 0.030777 || 57 0.10135 97 0.16688|| 137 0.22576|| 177 0.27767
18 0.03258 58 0.10306 98 0.16843|| 138 0.22715|| 178 0.27888
19 0.034382 || 59 0.10477 99 0.16999|| 139 0.22852| 179 0.28009
20 0.036183 || 60 0.10647 || 100 0.17153|| 140 0.2299 || 180 0.28129
21 0.037982 || 61 0.10817 || 101 0.17308|| 141 0.23127|| 181 0.28248
22 0.03978 62 0.10987 || 102 0.17462|| 142 0.23263|| 182 0.28368
23 0.041576 || 63 0.11156 || 103 0.17615|| 143 0.23399| 183 0.28487
24 0.043371 || 64 0.11325 || 104 0.17768|| 144 0.23535|| 184 0.28605
25 0.045164 || 65 0.11494 || 105 0.17921)| 145 0.2367 || 185 0.28723
26 0.046955 || 66 0.11662 || 106 0.18073|| 146 0.23805|| 186 0.28841
27 0.048745 || 67 0.1183 107 0.18225|| 147 0.23939| 187 0.28958
28 0.050533 || 68 0.11997 || 108 0.18377| 148 0.24073| 188 0.29075
29 0.052319 || 69 0.12164 || 109 0.18527| 149 0.24206| 189 0.29192
30 0.054103 || 70 0.12331 || 110 0.18678|| 150 0.24339|| 190 0.29308
31 0.055885 || 71 0.12498 || 111 0.18828|| 151 0.24472|| 191 0.29424
32 0.057665 || 72 0.12664 || 112 0.18978|| 152 0.24604|| 192 0.29539
33 0.059443 || 73 0.12829 || 113 0.19127|| 153 0.24736|| 193 0.29654
34 0.061219 || 74 0.12995 || 114 0.19276|| 154 0.24867|| 194 0.29768
35 0.062993 || 75 0.1316 115 0.19424|| 155 0.24998|| 195 0.29882
36 0.064764 || 76 0.13324 || 116 0.19572|| 156 0.25128|| 196 0.29996
37 0.066533 || 77 0.13488 || 117 0.19719|| 157 0.25258|| 197 0.30109
38 0.0683 78 0.13652 || 118 0.19866| 158 0.25387|| 198 0.30222
39 0.070064 || 79 0.13816 || 119 0.20013|| 159 0.25517|| 199 0.30335
40 0.071826 || 80 0.13978 || 120 0.20159|| 160 0.25645|| 200 0.30447
Table 2: 1(j = 1000)vs.j,j =1;:::;200, by stepl.
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205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400

0.31001
0.31546
0.32081
0.32607
0.33123
0.3363
0.34129
0.34618
0.35098
0.3557
0.36034
0.36489
0.36936
0.37375
0.37806
0.38229
0.38645
0.39053
0.39454
0.39848
0.40235
0.40614
0.40987
0.41354
0.41713
0.42067
0.42413
0.42754
0.43089
0.43418
0.4374
0.44058
0.44369
0.44675
0.44976
0.45271
0.45561
0.45846
0.46125
0.464

405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600

0.4667
0.46936
0.47196
0.47453
0.47704
0.47951
0.48194
0.48433
0.48667
0.48897
0.49124
0.49346
0.49565
0.49779
0.4999
0.50197
0.50401
0.50601
0.50798
0.50991
0.5118
0.51367
0.5155
0.5173
0.51907
0.52081
0.52251
0.52419
0.52584
0.52745
0.52904
0.5306
0.53214
0.53364
0.53512
0.53658
0.538
0.5394
0.54078
0.54213

605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800

0.54346
0.54476
0.54604
0.54729
0.54852
0.54973
0.55092
0.55208
0.55323
0.55435
0.55545
0.55653
0.55758
0.55862
0.55964
0.56064
0.56161
0.56257
0.56351
0.56443
0.56533
0.56622
0.56708
0.56793
0.56876
0.56957
0.57037
0.57115
0.57191
0.57265
0.57338
0.57409
0.57479
0.57547
0.57614
0.57679
0.57743
0.57805
0.57865
0.57922

805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000

0.57978
0.58031
0.58084
0.58135
0.58185]
0.58233
0.58281
0.58328
0.58372
0.58415]
0.58458
0.58499
0.5854
0.5858
0.58619
0.58636
0.58669
0.58701
0.58733
0.58763
0.58793
0.58821
0.5885
0.58877
0.58904
0.58931
0.58956
0.58956
0.58978
0.59
0.59024
0.59049
0.59077
0.59113
0.59149
0.59143
0.59131
0.59114
0.59092
0.59064
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