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1 Introduction
We consider the following linear pseudo-parabolic problem :

ut − ∆u− τ∆ut = f (1)

for x ∈ Ω, t ∈ J = (0, T ], τ > 0, where Ω is a bounded domain in R
d,

with Lipschitz boundary ∂Ω.
We consider homogenuous Dirichlet boundary condition for u, and the
initial condition :

u(x, 0) = u0(x), x ∈ Ω. (2)

where u0 ∈ H1
0 (Ω).

This model describes :

• the flow of fluids in a fissured porous medium (Barenblatt, Entov
and Ryzhik 1990 [3])

• the two-phase flow in porous media with dynamical capillary pres-
sure (Cuesta, Van Duijn, and Hulshof 1999 [4])

2 DGFEM Discretization

2.1 Motivation
Develop a numerical scheme with the following properties :

• Robustness

• Maintain accuracy

• Provide a local, element based discretization which is suitable for
hp mesh adaptation

• Easy to parallelize

2.2 DG Time Discretization
Let M be a partition of J =]0, T [ into N(M) subintervals {In}

N
n=1 given

by In =]tn−1, tn[. The time step kn is kn := tn − tn−1. We defined the
one-sided limits in H := L2(Ω) (or V := H1

0 (Ω)) of a function u as

u+
n = lim

s→0+
u(tn+s), 0 ≤ n ≤ N−1, u−n = lim

s→0+
u(tn−s), 1 ≤ n ≤ N (3)

and we set [u]n = u+
n − u−n , 0 ≤ n ≤ N − 1.

The semidiscrete space in which we want to discretise (1)-(2) in time is

Vr
k = {u : J → V : u|In

∈ Pr(In;V ), 1 ≤ n ≤ N}. (4)

These functions are allowed to be discontinuous at the nodal points.
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Fig 1: Discontinuous function u

We consider the following discontinuous Galerkin approximation of (1)-
(2) : Find uk ∈ Vr

k satisfies

a(uk, vk) = F (vk) ∀ vk ∈ Vr
k . (5)

The forms a and F are given by

a(u, v) =

∫ tN

0

(

(ut, v) + (∇u,∇v) + τ(∇ut,∇v)
)

dt+

N−1
∑

n=1

([u]n, v
+
n )

+ (u+
0 , v

+
0 ) + τ

N−1
∑

n=1

([∇u]n,∇v
+
n ) + τ(∇u+

0 ,∇v
+
0 ), (6)

and

F (v) = (u0, v
+
0 ) + τ(∇u0,∇v

+
0 ) +

∫ tN

0

(f, v)dt.

Remark : Owing to the discontinuity of the trial and test space the
DGFEM, (5) can be interpreted as an implicit time marching scheme,
where uk is obtained by solving successively evolution problems on In
for n = 1, ..., N with initial values u−k,n−1, i.e if uk is already given on
Ik, 1 ≤ k ≤ n− 1, we determine uk on In by solving :
Find uk ∈ Pr(In;V ) such that
∫

In

{(u′k, vk)H + (∇(uk + τu′k),∇vk)H}dt+ (u+
k,n−1, v

+
k,n−1)H

+τ(∇u+
k,n−1,∇v

+
k,n−1)H (7)

=

∫

In

(f, vk)Hdt+ (u−k,n−1, v
+
k,n−1)H + τ(∇u−k,n−1,∇v

+
k,n−1)H

for all vk ∈ Pr(In;V ). Here we set u−k,0 = u0.

2.2 Time shape functions and spatial problems
The DGFEM reduces the pseudo-parabolic equation (1) in each time step
In to a coupled elliptic system of r+1 equations. We set uk =

∑r

j=0 uk,jϕj

and vk =
∑r

i=0 vk,iψi, uk,j , vk,i ∈ V , where {ϕ}r
j=0 and {ψ}r

j=0 are the
normalised Legendre polynomials. Problem (7) is then equivalent to :
Find {uk,j}

r
j=0 ⊂ V such that for all {vk,i}

r
i=0 ⊂ V

r
∑

i,j=0

{
[

∫

I

ϕ′

jψidt+ ϕ+
j (t0)ψ

+
i (t0)

](

(uk,j , vk,i)

+ τ(∇uk,j ,∇vk,i)
)

+
(

∫

I

ϕjψidt
)

(∇uk,j ,∇vk,i)}

=

r
∑

i=0

{(

∫

I

fψidt, vk,i) +
(

(uinit, vk,i) + τ(∇uinit,∇vk,i)
)

ψ+
i (t0)} (8)

We introduce the matrices

Âij :=

∫ 1

−1

ϕ̂′

jψ̂idt̂+ ϕ̂+
j (−1)ψ̂+

i (−1), B̂ij :=

∫ 1

−1

ϕ̂jψ̂idt̂,

Then (8) is equivalent to find {uk,j}
r
j=0 ⊂ V such that for all {vk,i}

r
i=0 ⊂ V

r
∑

i,j=0

Âij

(

(uk,j , vk,i) + τ(∇uk,j ,∇vk,i)
)

+
k

2
B̂ij(∇uk,j ,∇vk,i)

=

r
∑

i=0

k

2
(f̂1

i , vk,i) + (f̂2
i , vk,i) (9)

Remark 1 The matrices Â and B̂ are independent of the time step and can be
calculated in a preprocessing step. Their size depend of r.

The ideal choice of time shape functions is {ϕi} would be the one where
Â and B̂ diagonalize simultaneously.

3 Existence and uniqueness of discret solution

3.1 Stability Lemma
Lemma 1 For all vk, wk ∈ Vr

k there holds

a(vk , wk) =

N
∑

n=1

∫

In

{−(vk, w
′

k)H + (∇vk ,∇(wk − τw′

k))H}dt

−

N−1
∑

n=1

(v−k,n, [wk]n)H + (v−k,N , w
−

k,N )H

− τ

N−1
∑

n=1

(∇v−k,n, [∇wk ]n)H + τ(∇v−k,N ,∇w
−

k,N )H (10)

a(vk , vk) =

N
∑

n=1

∫

In

‖∇vk‖
2
Hdt+

1

2
‖v+

k,0‖
2
H +

τ

2
‖∇v+

k,0‖
2
H

+
1

2

N−1
∑

n=1

‖[vk]n‖
2
H +

τ

2

N−1
∑

n=1

‖[∇vk]n‖
2
H (11)

3.1 Existense and uniqueness
Proposition 1 The DGFEM (5) has a unique solution uk ∈ Vr

k . Moreover if u
is the solution to (1)-(2), one has the Galerkin orthogonality

a(u− uk, vk) = 0 ∀ vk ∈ Vr
k

4 Error Analysis

4.1 The interpolation Error
We introduce first the operator Πr defined by :

Definition 1 Let I = (−1, 1). For a function u ∈ L2(I ;V ) which is continu-
ous at t = 1, we define Πru ∈ Pr(I ;V ), r ∈ N0, via the r + 1 conditions

∫

I

(Πru− u, q)τdt = 0 ∀ q ∈ Pr−1(I ;V ), Πru(1) = u(1) in V. (12)

where
(u, v)τ = (u, v)H + τ(∇u,∇v)H ,

Πr is well defined. We set

Πru =
r−1
∑

i=0

uiLi + (u(1) −
r−1
∑

i=0

ui)Lr. (13)

we prove that πr is unique and satisfy (12).

Definition 2 On an arbitrary interval In = (tn−1, tn), with kn := tn − tn−1

we define Πr
In

via the linear mapQ : (−1, 1) → In, t̂→ t = 1
2 (tn−1 + tn + t̂kn)

as
Πr

In
u = [Πr(u ◦Q)] ◦Q−1

Main Result
Now in order to give a priori estimate, we have to estimate the operator
Πr

Theorem 1 Let In = (tn−1, tn), kn := tn − tn−1, u ∈ Hrn+1(In;V ), rn ≥ 1.
Then, there is a constant C independent of r and k such that

‖u− Πrn

In
u‖2

L2(In;V ) ≤
(kn

2

)2(rn+1) 1

r4nrn!2
‖u(rn+1)‖2

L2(In;V ) (14)

Proof : We proof the theorem in the reference element I = (−1, 1), then
we use the transformation Q.

From the Definition of Πr we have Πru =
∑r−1

i=0 uiLi + (u(1)−P ru(1))Lr.
Therefore,

u− Πru = (u− P ru) − (u(1) − P ru(1))Lr.

using the othogonality of Legendre polynomial we get

‖u− Πru‖2
L2(I;V ) = ‖u− P ru‖2

L2(I;V ) +
2

2r + 1
(‖u(1)− (P ru)(1)‖V )2

From [1], we have

‖u− P ru‖2
L2(I;V ) ≤

1

r2(2r)!
‖u(r+1)‖2

L2(I;V ), (15)

For the second therm we use Darboux-Christoffel formula :

(Pru)(s) =
r + 1

2

∫ 1

−1

Lr+1(s)Lr(t) − Lr(s)Lr+1(t)

s− t
u(t)dt (16)

and
r + 1

2

∫ 1

−1

Lr+1(s)Lr(t) − Lr(s)Lr+1(t)

s− t
dt = 1.

then we get in particular for s = 1

(Pru)(1) − u(1) =
r + 1

2

∫ 1

−1

Lr+1(t) − Lr(t)

t− 1
(u(t) − u(1))dt

the result is obtain using the following Legendre polynomial propertie,
then Cauchy-Schwarz

Lr =
1

2rr!

( d

dt

)r
(1 − t2)r,

4.2 A priori error estimate
Proposition 2 Let u be the solution of (1.1) − (1.2) and uk the solution of the
DGFEM (5) in Vr

k . Let Iu ∈ Vr
k be the interpolant of u which is defined on each

time interval In as Iu|In
= Πr

In
(u|In

). Then there holds

‖u− uk‖L2(I;V ) ≤ C‖u− Iu‖L2(I;V ).

The constant C is in particular independent of T.

Proof: the assertion follows by using the properties of the operator Πr, the
orthogonality propertie and Cauchy Schwartz.
Proposition 2 and Theorem 1 give error estimates for the DGFEM (5)
which are valid if the exact solution is at least in H1(I ;V )

Theorem 2 Let u be the solution of (1)-(2) and uk the solution of the DGFEM
(5). Assume that u|In

∈ Hrn+1(In;V ) for 0 ≤ n ≤ N . Then

‖u− uk‖
2
L2(In;V ) ≤ C

N
∑

n=1

(kn

2

)2(rn+1) 1

r4nrn!2
‖u(rn+1)‖2

L2(In;V ) (17)

C is a constant independent of r and k

4.3 A posteriori error estimate :

5 Numerical Tests
Let Ω = (0, 1)2 and J = (0, 0.1). We choose u0(x, y) = sin(πx) sin(πy)
and f = − exp(−t) sin(πx) sin(πy), with τ = 1. u0 is actually the first
eigenfunction of the Laplacian and u0 ∈ H1

0 (Ω). The corresponding exact
solution u(t, x, y) is smooth in space and time and given by :

u(t, x, y) = exp(−t) sin(πx) sin(πy).
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Fig 2: Convergence rate for h-DGFEM

References
[1] C. Schwab, p- and hp-Finite Element Methods, Oxford University Press,

New York, 1998.

[2] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems.

[3] G. Barenblatt, V. Entov, and V. Ryzhik, Theory of fluid flow through natural
rocks. Dordrecht: Kluwer, 1990.

[4] C. Cuesta, C. J. van Duijn, and J. Hulshof, Infiltration in porous media flow
with dynamic capillary pressure: Travelling waves. Modeling, Analysis and
Simulation, Preprint CWI, 1999 November 30, 1-19.

[5] K. Eriksson, C. Johnson, Adaptive Finite Element Methods for Parabolic
Problems II: Optimales Error Estimates in L∞L2 and L∞L∞.

[6] R. E. Ewing, Time-stepping Galerkin Methods for nonlinear sobolev partial
differential equations, SIAM J. Numer. Anal., 15(1978), 1125-1150.


