

Finite Element Discretization of a Pseudo-parabolic Equation

A. TAAKILI^a

^aLaboratoire de Maths Applis, Université de Pau, 64000 Pau, FRANCE

1 Introduction

We consider the following linear pseudo-parabolic problem :

 $u_t - \Delta u - \tau \Delta u_t = f$ (1) for $x \in \Omega, t \in J = (0, T], \tau > 0$, where Ω is a bounded domain in \mathbb{R}^d , with Lipschitz boundary $\partial \Omega$. We consider homogenuous Dirichlet boundary condition for u, and the initial condition :

$$u(x,0) = u_0(x), \quad x \in \Omega.$$

where $u_0 \in H_0^1(\Omega)$.

This model describes :

- the flow of fluids in a fissured porous medium (Barenblatt, Entov and Ryzhik 1990 [3])
- the two-phase flow in porous media with dynamical capillary pressure (Cuesta, Van Duijn, and Hulshof 1999 [4])

2 DGFEM Discretization

2.1 Motivation

Develop a numerical scheme with the following properties :

- Robustness
- Maintain accuracy
- $\bullet\,$ Provide a local, element based discretization which is suitable for hp mesh adaptation
- Easy to parallelize

2.2 DG Time Discretization

Let \mathcal{M} be a partition of J =]0, T[into $N(\mathcal{M})$ subintervals $\{I_n\}_{n=1}^N$ given by $I_n =]t_{n-1}, t_n[$. The time step k_n is $k_n := t_n - t_{n-1}$. We defined the one-sided limits in $H := L^2(\Omega)$ (or $V := H_0^1(\Omega)$) of a function u as

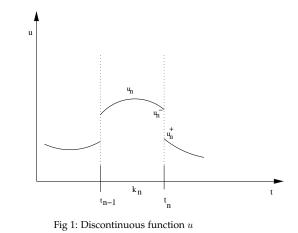
 $u_n^+ = \lim_{s \to 0^+} u(t_n + s), \ 0 \le n \le N - 1, \ u_n^- = \lim_{s \to 0^+} u(t_n - s), \ 1 \le n \le N$ (3)

and we set $[u]_n = u_n^+ - u_n^-$, $0 \le n \le N - 1$. The semidiscrete space in which we want to discretise (1)-(2) in time is

$$\mathcal{V}_k^r = \{ u : J \to V : u |_{I_n} \in \mathcal{P}^r(I_n; V), \ 1 \le n \le N \}.$$

$$\tag{4}$$

These functions are allowed to be discontinuous at the nodal points.



2.2 Time shape functions and spatial problems

The DGFEM reduces the pseudo-parabolic equation (1) in each time step I_n to a coupled elliptic system of r+1 equations. We set $u_k = \sum_{j=0}^r u_{k,j}\varphi_j$ and $v_k = \sum_{i=0}^r v_{k,i}\psi_i$, $u_{k,j}, v_{k,i} \in V$, where $\{\varphi\}_{j=0}^r$ and $\{\psi\}_{j=0}^r$ are the normalised Legendre polynomials. Problem (7) is then equivalent to : Find $\{u_{k,j}\}_{j=0}^r \subset V$ such that for all $\{v_{k,i}\}_{i=0}^r \subset V$

$$\sum_{i,j=0}^{r} \{ \left[\int_{I} \varphi_{j}' \psi_{i} dt + \varphi_{j}^{+}(t_{0}) \psi_{i}^{+}(t_{0}) \right] ((u_{k,j}, v_{k,i}) \\ + \tau (\nabla u_{k,j}, \nabla v_{k,i}) + \left(\int_{I} \varphi_{j} \psi_{i} dt \right) (\nabla u_{k,j}, \nabla v_{k,i}) \} \\ = \sum_{i=0}^{r} \{ \left(\int_{I} f \psi_{i} dt, v_{k,i} \right) + \left((u_{init}, v_{k,i}) + \tau (\nabla u_{init}, \nabla v_{k,i}) \right) \psi_{i}^{+}(t_{0}) \}$$
(8)

We introduce the matrices

(2)

$$\hat{A}_{ij} := \int_{-1}^{1} \hat{\varphi}'_{j} \hat{\psi}_{i} d\hat{t} + \hat{\varphi}^{+}_{j} (-1) \hat{\psi}^{+}_{i} (-1), \quad \hat{B}_{ij} := \int_{-1}^{1} \hat{\varphi}_{j} \hat{\psi}_{i} d\hat{t},$$

Then (8) is equivalent to find $\{u_{k,j}\}_{j=0}^r \subset V$ such that for all $\{v_{k,i}\}_{i=0}^r \subset V$

$$\sum_{i,j=0}^{r} \hat{A}_{ij} \left((u_{k,j}, v_{k,i}) + \tau (\nabla u_{k,j}, \nabla v_{k,i}) \right) + \frac{k}{2} \hat{B}_{ij} (\nabla u_{k,j}, \nabla v_{k,i})$$
$$= \sum_{i=0}^{r} \frac{k}{2} (\hat{f}_{i}^{1}, v_{k,i}) + (\hat{f}_{i}^{2}, v_{k,i})$$
(9)

Remark 1 The matrices \hat{A} and \hat{B} are independent of the time step and can be calculated in a preprocessing step. Their size depend of r.

The ideal choice of time shape functions is $\{\varphi_i\}$ would be the one where \hat{A} and \hat{B} diagonalize simultaneously.

3 Existence and uniqueness of discret solution

3.1 Stability Lemma

Lemma 1 For all v_k , $w_k \in \mathcal{V}_k^r$ there holds

$$a(v_{k}, w_{k}) = \sum_{n=1}^{N} \int_{I_{n}} \{-(v_{k}, w_{k}')_{H} + (\nabla v_{k}, \nabla (w_{k} - \tau w_{k}'))_{H} \} dt$$

$$- \sum_{n=1}^{N-1} (v_{k,n}^{-}, [w_{k}]_{n})_{H} + (v_{k,N}^{-}, w_{k,N}^{-})_{H}$$

$$- \tau \sum_{n=1}^{N-1} (\nabla v_{k,n}^{-}, [\nabla w_{k}]_{n})_{H} + \tau (\nabla v_{k,N}^{-}, \nabla w_{k,N}^{-})_{H}$$
(10)

$$a(v_{k}, v_{k}) = \sum_{n=1}^{N} \int_{I_{n}} \|\nabla v_{k}\|_{H}^{2} dt + \frac{1}{2} \|v_{k,0}^{+}\|_{H}^{2} + \frac{\tau}{2} \|\nabla v_{k,0}^{+}\|_{H}^{2}$$

$$+ \frac{1}{2} \sum_{n=1}^{N-1} \|[v_{k}]_{n}\|_{H}^{2} + \frac{\tau}{2} \sum_{n=1}^{N-1} \|[\nabla v_{k}]_{n}\|_{H}^{2}$$
(11)

3.1 Existense and uniqueness

Proposition 1 The DGFEM (5) has a unique solution $u_k \in \mathcal{V}_k^r$. Moreover if u is the solution to (1)-(2), one has the Galerkin orthogonality

 $a(u-u_k,v_k) = 0 \quad \forall \ v_k \in \ \mathcal{V}_k^r$

4 Error Analysis

4.1 The interpolation Error

We introduce first the operator Π^r defined by :

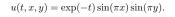
We consider the following discontinuous Galerkin approximation of (1)-

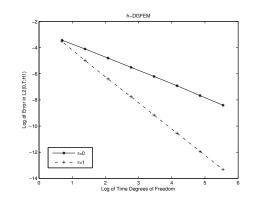
C is a constant independent of *r* and *k*

4.3 A posteriori error estimate :

5 Numerical Tests

Let $\Omega = (0,1)^2$ and J = (0,0.1). We choose $u_0(x,y) = \sin(\pi x)\sin(\pi y)$ and $f = -\exp(-t)\sin(\pi x)\sin(\pi y)$, with $\tau = 1$. u_0 is actually the first eigenfunction of the Laplacian and $u_0 \in H_0^1(\Omega)$. The corresponding exact solution u(t,x,y) is smooth in space and time and given by :





(15)

(16)

From the Definition of Π^r we have $\Pi^r u = \sum_{i=0}^{r-1} u_i L_i + (u(1) - P^r u(1))L_r$.

 $u - \Pi^{r} u = (u - P^{r} u) - (u(1) - P^{r} u(1))L_{r}.$

 $\|u - \Pi^{r}u\|_{L^{2}(I;V)}^{2} = \|u - P^{r}u\|_{L^{2}(I;V)}^{2} + \frac{2}{2r+1}(\|u(1) - (P^{r}u)(1)\|_{V})^{2}$

 $||u - P^r u||^2_{L^2(I;V)} \le \frac{1}{r^2(2r)!} ||u^{(r+1)}||^2_{L^2(I;V)},$

 $(P_r u)(s) = \frac{r+1}{2} \int_{-1}^{1} \frac{L_{r+1}(s)L_r(t) - L_r(s)L_{r+1}(t)}{s-t} u(t)dt$

 $\frac{r+1}{2}\int_{-1}^{1}\frac{L_{r+1}(s)L_r(t)-L_r(s)L_{r+1}(t)}{s-t}dt = 1.$

 $(P_r u)(1) - u(1) = \frac{r+1}{2} \int_{-1}^{1} \frac{L_{r+1}(t) - L_r(t)}{t-1} (u(t) - u(1)) dt$

the result is obtain using the following Legendre polynomial propertie,

 $L_r = \frac{1}{2^r r!} \left(\frac{d}{dt}\right)^r (1 - t^2)^r,$

Proposition 2 Let u be the solution of (1.1) - (1.2) and u_k the solution of the DGFEM (5) in \mathcal{V}_k^r . Let $\mathcal{I}u \in \mathcal{V}_k^r$ be the interpolant of u which is defined on each time interval I_n as $\mathcal{I}u|_{I_n} = \prod_{I_n}^r (u|_{I_n})$. Then there holds

 $||u - u_k||_{L^2(I;V)} \le C ||u - \mathcal{I}u||_{L^2(I;V)}.$

Proof: the assertion follows by using the properties of the operator Π^r , the

Proposition 2 and Theorem 1 give error estimates for the DGFEM (5)

Theorem 2 Let u be the solution of (1)-(2) and u_k the solution of the DGFEM

 $\|u - u_k\|_{L^2(I_n;V)}^2 \le C \sum_{i=1}^N \left(\frac{k_n}{2}\right)^{2(r_n+1)} \frac{1}{r_n^4 r_n!^2} \|u^{(r_n+1)}\|_{L^2(I_n;V)}^2$ (17)

using the othogonality of Legendre polynomial we get

For the second therm we use Darboux-Christoffel formula :

Therefore,

and

From [1], we have

then we get in particular for s = 1

4.2 A priori error estimate

The constant C is in particular independent of T.

orthogonality propertie and Cauchy Schwartz.

which are valid if the exact solution is at least in $H^1(I; V)$

(5). Assume that $u|_{I_n} \in H^{r_n+1}(I_n; V)$ for $0 \le n \le N$. Then

then Cauchy-Schwarz

(2): Find $u_k \in \mathcal{V}_k^r$ satisfies

 $a(u_k, v_k) = F(v_k) \ \forall v_k \in \mathcal{V}_k^r.$

The forms a and F are given by

$$a(u,v) = \int_0^{t_N} \left((u_t,v) + (\nabla u, \nabla v) + \tau (\nabla u_t, \nabla v) \right) dt + \sum_{n=1}^{N-1} ([u]_n, v_n^+) + (u_0^+, v_0^+) + \tau \sum_{n=1}^{N-1} ([\nabla u]_n, \nabla v_n^+) + \tau (\nabla u_0^+, \nabla v_0^+),$$
(6)

and

 $F(v) = (u_0, v_0^+) + \tau(\nabla u_0, \nabla v_0^+) + \int_0^{t_N} (f, v) dt.$

Remark : Owing to the discontinuity of the trial and test space the DGFEM, (5) can be interpreted as an implicit time marching scheme, where u_k is obtained by solving successively evolution problems on I_n for n = 1, ..., N with initial values $u_{k,n-1}^-$, i.e if u_k is already given on I_k , $1 \le k \le n - 1$, we determine u_k on I_n by solving : Find $u_k \in \mathcal{P}^r(I_n; V)$ such that

$$\int_{I_n} \{ (u'_k, v_k)_H + (\nabla(u_k + \tau u'_k), \nabla v_k)_H \} dt + (u^+_{k,n-1}, v^+_{k,n-1})_H + \tau (\nabla u^+_{k,n-1}, \nabla v^+_{k,n-1})_H$$
(7)
$$= \int_{I_n} (f, v_k)_H dt + (u^-_{k,n-1}, v^+_{k,n-1})_H + \tau (\nabla u^-_{k,n-1}, \nabla v^+_{k,n-1})_H$$

for all $v_k \in \mathcal{P}^r(I_n; V)$. Here we set $u_{k,0}^- = u_0$.

Definition 1 Let I = (-1, 1). For a function $u \in L^2(I; V)$ which is continuous at t = 1, we define $\Pi^r u \in \mathcal{P}^r(I; V)$, $r \in \mathbb{N}_0$, via the r + 1 conditions $\int_I (\Pi^r u - u, q)_\tau dt = 0 \ \forall \ q \in \mathcal{P}^{r-1}(I; V), \quad \Pi^r u(1) = u(1) \ in \ V.$ (12)

where

(5)

 $(u,v)_{\tau} = (u,v)_H + \tau (\nabla u, \nabla v)_H,$

 Π^r is well defined. We set

$$\Pi^{r} u = \sum_{i=0}^{r-1} u_{i} L_{i} + (u(1) - \sum_{i=0}^{r-1} u_{i}) L_{r}.$$

we prove that π^r is unique and satisfy (12).

Definition 2 On an arbitrary interval $I_n = (t_{n-1}, t_n)$, with $k_n := t_n - t_{n-1}$ we define $\prod_{I_n}^r$ via the linear map $Q : (-1, 1) \to I_n$, $\hat{t} \to t = \frac{1}{2}(t_{n-1} + t_n + \hat{t}k_n)$ as

 $\Pi^r_{I_n} u = [\Pi^r (u \circ Q)] \circ Q^{-1}$

<u>Main Result</u>

Now in order to give a priori estimate, we have to estimate the operator Π^r

Theorem 1 Let $I_n = (t_{n-1}, t_n)$, $k_n := t_n - t_{n-1}$, $u \in H^{r_n+1}(I_n; V)$, $r_n \ge 1$. Then, there is a constant C independent of r and k such that

$$\|u - \Pi_{I_n}^{r_n} u\|_{L^2(I_n;V)}^2 \le \left(\frac{k_n}{2}\right)^{2(r_n+1)} \frac{1}{r_n^4 r_n!^2} \|u^{(r_n+1)}\|_{L^2(I_n;V)}^2$$
(14)

Proof : We proof the theorem in the reference element I = (-1, 1), then we use the transformation Q.

Fig 2: Convergence rate for h-DGFEM

References

(13)

- C. Schwab, p- and hp-Finite Element Methods, Oxford University Press, New York, 1998.
- [2] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems.
- [3] G. Barenblatt, V. Entov, and V. Ryzhik, Theory of fluid flow through natural rocks. Dordrecht: Kluwer, 1990.
- [4] C. Cuesta, C. J. van Duijn, and J. Hulshof, Infiltration in porous media flow with dynamic capillary pressure: Travelling waves. Modeling, Analysis and Simulation, Preprint CWI, 1999 November 30, 1-19.
- [5] K. Eriksson, C. Johnson, Adaptive Finite Element Methods for Parabolic Problems II: Optimales Error Estimates in $L_{\infty}L_2$ and $L_{\infty}L_{\infty}$.
- [6] R. E. Ewing, Time-stepping Galerkin Methods for nonlinear sobolev partial differential equations, SIAM J. Numer. Anal., 15(1978), 1125-1150.