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Abstract

Quantum dynamical systems typically deal with huge num-
bers of degrees of freedom, particularly functional integrals,
which makes them very difficult to simulate using deter-
ministic methods. Modeling such systems with stochas-
tic differential equations (SDEs) is an attractive alterna-
tive to Markov chain Monte-Carlo, but there remain stabil-
ity problems. An example of a multi-dimensional complex
SDE arises from an anharmonic oscillator with a one-mode
Bose-Einstein condensate (BEC) Hamiltonian given in [1],
for which the numerical solution becomes unreliable after
approximatively t = 0.3 for all tested numerical methods.
Splitting of drift methods as introduced in [3] have been tried
on this problem and seemed to improve the stability of the
results, but not to the desired extent (see [1]).
To improve the results, new numerical splitting methods
have recently been developed. However, it seems that the
choice of the numerical scheme alone might not guarantee
the reliability of the results. The use of carefully chosen
stochastic gauges as in [1] improves the accuracy of the
simulation greatly by taking into account some aspects of
the dynamics of the system. Non-vanishing boundary terms
from partial integration can be problematic and have to be
taken care of, for example considering them as constraints
and using projected SDEs techniques [2].

1. Simulation of Bose-Einstein condensates

Consider the case of an anharmonic oscillator with one-
mode BEC Hamiltonian treated in [1]. From the master
equation

∂ρ̂

∂t
=− i

~

[
Ĥ, ρ̂

]
, (1)

where Ĥ is the Hamiltonian and ρ̂ the density matrix, a
Fokker-Planck (FP) equation can be derived and from it an
Itô SDE of the form

dXt = a(Xt) dt + b(Xt) dWt, (2)

which can be solved numerically using standard SDE tech-
niques (where Xt ∈ Rn, a : Rn → Rn, b : Rn → Rn×m and
Wt is a m-dimensional Brownian motion). However, a sta-
ble integrator is needed to solve (2). For instance, explicit
methods produce divergent numerical solutions, whereas
semi-implicit schemes or splitting schemes give a reliable
solution for the integration time interval [0, 0.3] at least, see
Figure 1.

Figure 1: exact and numerical solution of the Y -observable
from [1] with a drift-splitting scheme

It can be seen that after t = 0.3, the numerical solution di-
verges, and this for all tested methods, time steps and num-
ber of sample paths. In order to improve those results, sev-
eral approaches were tried. The first one was to develop a
specific method, resulting in a scheme using a splitting of
both drift and diffusion coefficient, which will be treated in
section 2.

2. A drift and diffusion coefficient splitting scheme

Using the same techniques as in [3], we can derive an or-
der 2.0 method using splittings of both the drift and diffusion
coefficient:

a(x) = A(x) + B(x), b(x) = C(x) + D(x),

where A and C are ‘nice’ functions and

∂2

∂xi∂xj
C(x) = 0, ∀i, j,

which is not too harsh a condition since linear C are con-
venient to use. Using the notation ft := f (Xt), the obtained
scheme is then for α = 1, . . . , n
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where

Ye = xt + ath + btξ1, Y± = xt ± btξ0,

Y = xt + ath

and ξα
0 , ξα

1 ∼ N(0, h) (thus modeling Wα
t+h−Wα

t ), while Ξαβ

is an approximation to
∫ t+h
t Wα

s dW
β
s .

The method (3) can be shown to have an order of 2.0. In
all tested cases, it behaves similarly to the scheme defined
in [3] and thus does not reduce the numerical error signifi-
cantly, unfortunately.

3. Changing the SDE

It is worth mentioning that the gauges introduced in [1] do
reduce the error by several orders of magnitude. The form
of the SDE can indeed have a huge impact on its numerical
solution, and thus some effort was invested into finding an
appropriate one. The density matrix here is

ρ̂ =

∫
P (α, β, θ, t)Λ̂e−g dα dβ dθ (4)

with α, β ∈ C, θ ∈ R and kernel

Λ̂ =eiθ‖α〉〈β‖ + e−iθ‖β〉〈α‖
eg =2eRe(α·β) cos(θ + Im(α · β))

From the master equation (1) and

Ĥ =
~
2
(â†â)2,

where â†, â are the creation and annihilation operator of the
boson field, we can derive (writing dµ := dα dβ dθ)

˙̂ρ
(4)
=

∫
∂P

∂t
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=
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~

∫
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where the Poisson bracket [Λ̂, Ĥ ] is

[Λ̂, Ĥ ] =
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Using partial integration and assuming that the boundary
terms vanish, we get a FP equation of the form

∂P
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=
∑

i

Ai
∂P
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+
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Dij
∂2P

∂xi∂xj
(5)

where we wrote x1 = Re(α), x2 = Im(α), x3 = Re(β), x4 =
Im(β), x5 = θ. We can obtain the SDE of interest by writ-
ing Ai = −ai, Dij = −1

2(bb
>)ij. Note that partial derivatives

with respect to θ do not occur without using gauges, which
are identities that can be added freely to the equation, one
of them being

C2

(
∂2

∂θ2
+ 1

)
Λ̂ = 0. (6)

The gauge used in [1] is depending on a free parameter
µ (and vanishes when µ = 0). As can be seen in Figure
2, the numerical solution is exploding without the gauges,
whereas the choice µ = 0.001 gives the best result.

Figure 2: exact and numerical solution of the Y -observable
from [1] with a linear drift-splitting scheme, with or without
gauges

Without changing the coordinates in the way presented in
[1], we found that the obtained FP equation is ultrahyper-
bolic, which makes the passage to a SDE system problem-
atic.

4. Conclusion and future work

It is thought that the lack of reliability after t = 0.3 lies in the
fact that the chosen SDE do not model the process accu-
rately after some time. It is quite possible that the appear-
ance of non-vanishing boundary terms (meaning that we
cannot derive the FP equation directly, although we might
be able to do it using identities like (6)) requires us to mod-
ify the SDE with time. An other option would be to impose
some constraints on the system, which can be done numer-
ically by using a projection technique as introduced in [2].
However, it is as yet unclear wether these tricks might be
enough to overcome the problem of ultrahyperbolicity of the
FP equation. In any case we would need more information
about the boundary terms and the constraints. More effort
will be directed toward working with stochastic differential-
algebraic equations with several constraints using projected
SDE techniques.
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