Calcul de solitons en optique non linéaire

Laurent Di Menza

Analyse Numérique et EDP Laboratoire de Mathématiques Université Paris-Sud Orsay

Plan de l'exposé

- Cas de l'équation de Schrödinger non linéaire
- Cas d'un système régissant la propagation dans des milieux quadratiques

Conclusion

Solitons pour NLS 1

Equation de Schrödinger (NLS) : modèle universel intervenant en optique non linéaire, physique des plasmas, etc.

$$i\frac{\partial\psi}{\partial t} + \Delta\psi + \alpha|\psi|^{2\sigma}\psi = 0 \tag{1}$$

avec $\psi = \psi(t, x) \in \mathbb{C}, x \in \mathbb{R}^d, \alpha = \pm 1$ et $\sigma > 0$.

Problème de Cauchy dans $H^1(\mathbb{R}^d)$: Ginibre-Velo, Strauss, etc.

- Solution Cas défocalisant $\alpha = -1$: globalement bien posé si $\sigma < \frac{2}{d-2}$.

Cas focalisant $\alpha = 1$: - localement bien posé si $\sigma < \frac{2}{d-2}$

- globalement bien posé si $\sigma < \frac{2}{d}$.

Solutions stationnaires :

Dans le cas focalisant, on cherche ψ de la forme $\psi(t, x) = e^{i\omega t}u(x)$ ($\omega > 0$) et $u \in H^1(\mathbb{R}^d)$, avec u solution de

$$-\omega u+\Delta u+|u|^{2\sigma}u=0,\;x\in\mathbb{R}^{d},\quad\sigma<\sigma^{*}=rac{2}{d-2}.$$

Rescaling $\implies \omega = 1$.

- En dimension d = 1: $u(x) = \frac{(\sigma + 1)^{1/2\sigma}}{\cosh(\sigma x)^{1/\sigma}}$ par intégration.
- ✓ En dimension $d \ge 2$: situation plus riche : pas unicité !
 Hypothèses : $u(x) \equiv u(r), r = ||x||$ et $\lim_{r \to \infty} u(r) = 0$ ("Bright soliton").

Recherche de bright solitons en dimension d :

Equation différentielle d'ordre 2 non linéaire

$$u''(r) + \frac{d-1}{r}u'(r) - u(r) + |u(r)|^{2\sigma}u(r) = 0, \quad r > 0$$

$$u(0) = u_0, \ u'(0) = 0 \text{ (par régularité)}.$$
(2)

Problème : déterminer la valeur de $u_0 := u_{0,k}$ telle que la solution de (2) s'annule k fois.

- k = 0: état fondamental (Weinstein).
- $lambda k \ge 1$: états excités (Mc Leod-Troy-Weissler).

Utilisation de la méthode de tir.

Algorithme pour le calcul de $u_{k,0} := \beta$:

On part de $\beta \in [a_1, b_1]$ (par exemple, $a_1 = 0$ et $b_1 \gg 1$).

pour n = 1, ndich

 $\begin{array}{l} \beta_n = (a_n + b_n)/2 \ ;\\ \mbox{Résolution de (2) pour } r \in [0,R] \ \mbox{avec } u_0 = \beta_n \ ;\\ d_n = \# \left\{ r \leq R \, ; \, u(r) = 0 \right\} \ ;\\ \mbox{Si } d_n \leq b_k, \, a_{n+1} = a_n \ \mbox{et } b_{n+1} = \beta_n \ ;\\ \mbox{Sinon, } a_{n+1} = \beta_n \ \mbox{et } b_{n+1} = b_n \ ;\\ \mbox{fin} \end{array}$

Cas $\sigma = 1$, d = 2:

 $0 \leq k \leq 2.$

Figure 1: $u_k = f(r)$, Figure 2: log $|u_k| =$ $f(r), 0 \le k \le 2.$

Recherche de vortex en dimension 2

On pose $\psi(t, x, y) = e^{i\omega t} e^{im\theta} u(r)$ avec $m \in \mathbb{N}$ (*m* charge du vortex), (*r*, θ) coordonnées polaires de $(x, y) \in \mathbb{R}^2$. Alors ψ vérifie (NLS) si

$$u''(r) + \frac{1}{r}u'(r) - \frac{m^2}{r^2}u(r) - u(r) + |u(r)|^{2\sigma}u(r) = 0.$$
(3)

Problème : terme supplémentaire $u(r)/r^2 \implies u_0 = 0$. Changement de fonction : $u(r) := r^m U(r)$.

$$\implies U''(r) + \frac{2m+1}{r}U'(r) - U(r) + r^m |U(r)|^{2\sigma}U(r) = 0,$$
 (4)

avec $(U(0), U'(0)) = (U_0, 0)$, U_0 calculé avec la méthode de tir.

Cas $\sigma = 1$:

Figure 3: $u_{k,m} = f(r)$, $k = 0, 0 \le m \le 5$. Figure 4: $u_{k,m} = f(r)$, $0 \le k \le 4, m = 1$.

Comportements asymptotiques

But : analyser le comportement lorsque $k \to \infty$.

Exemple : $c_1(1+k^2)^{d/2} \le ||u_k||_{L^2} \le c_2(1+k^2)^{d/2}$ (Kajikiya '95).

Recherche d'une loi puissance du type $||u_k||_{L^{\infty}} \sim k^{\gamma(d,\sigma)}$ en calculant $\lambda = d \ln ||u_k||_{L^{\infty}} / d \ln k$ pour *k* grand.

Quelques conjectures :

- Bright : $||u_k||_{L^{\infty}} \sim k^{\frac{1+\sigma^*/2}{\sigma^*-\sigma}}, \ \sigma^* = \frac{2}{d-2}.$
- Solution Vortex : $\|U_{k,m}\|_{L^{\infty}} \sim k^{\frac{1+m\sigma}{2}}$.

Cas d = 2 et d = 3:

Figure 5: $\lambda = f(k)$, Figure 6: $\lambda = f(k)$, d = 2. d = 3.

Figure 7: Comparaison entre λ et $\gamma(d, \sigma)$, $\sigma \in [0, \sigma^*[, d = 3, 4, 5.$

2 Milieux quadratiques

On considère à présent un modèle de propagation d'ondes dans un milieu non linéaire dit quadratique

- $\varphi = \varphi(\omega)$ (fréquence fondamentale)
- $\psi = \psi(2\omega)$ (fréquence double)

Système de Maxwell + simplifications + adimensionnements

$$\implies \begin{cases} i\frac{\partial\varphi}{\partial z} + \Delta\varphi - \varphi + \bar{\varphi}\psi = 0\\ i\sigma\frac{\partial\psi}{\partial z} + \Delta\psi - \rho\psi + \frac{1}{2}\varphi^2 = 0, \end{cases}$$
(5)

avec $\varphi = \varphi(z, x)$, $\psi = \psi(z, x)$, z variable de propagation le long de l'axe longitudinal et x variable transverse.

Etats stationnaires :

On pose $\varphi(z,x) = e^{i\omega z}u(x)$ et $\psi(z,x) = e^{2i\omega z}v(x)$, avec u et v localisées.

Système elliptique non linéaire : si $\omega = 0$ (sans perte de généralité),

$$\begin{aligned} -u + \Delta u + \bar{u}v &= 0 \\ -\rho v + \Delta v + \frac{1}{2}u^2 &= 0. \end{aligned}$$
(6)

Modèles intensivement étudiés en optique diffractive non linéaire (Buryak, Kivshar, Malomed, Wise, etc.)

 $\label{eq:cased} \textbf{Cas de la dimension} \ 1$

Hypothèse : *u* et *v* sont paires et décroissent vers zéro à l'infini.

$$u''(x) - u(x) + u(x)v(x) = 0 \qquad x > 0$$

$$v''(x) - \rho v(x) + \frac{1}{2}u^2(x) = 0$$

$$u(0) = u_0, \ v(0) = v_0, \ u'(0) = 0, \ v'(0) = 0.$$
(7)

Proposition 1. Soit (u_0, v_0) les valeurs en x = 0 correspondant à une solution localisée de (7). Alors on a la relation

$$u_0^2 + \rho v_0^2 - u_0^2 v_0 = 0.$$
(8)

 \implies un seul paramètre de tir à ajuster.

Solutions (u_k, v_k) , $k \geq 1$:

Figure 8: u_k , $1 \leq k \leq 3$.

Figure 9: v_k , $1 \le k \le 3$.

Observation : $(u_{0,k}, v_{0,k}) \rightarrow (u_*, v_*)$ lorsque $k \rightarrow \infty$ (différent du cas (NLS) dans lequel $u_k \rightarrow \infty$).

k	$u_{0,k}$	$v_{0,k}$
0	1.55309535851485	1.41508910697179
1	1.54841943801909	1.42123527210442
2	1.54840928210547	1.42124884162844
3	1.54840925984781	1.42124887136843
4	1.54840925979908	1.42124887143354
5	1.54840925979861	1.42124887143418

Valeur limite : solution périodique du problème (non localisée en espace).

Dimensions d'espace supérieures

$$u''(r) + \frac{d-1}{r}u'(r) - u(r) + u(r)v(r) = 0 \qquad r > 0$$

$$v''(r) + \frac{d-1}{r}v'(r) - \rho v(r) + \frac{1}{2}u^2(r) = 0 \qquad r > 0$$

$$u(0) = u_0, \ v(0) = v_0, \ u'(0) = 0, \ v'(0) = 0.$$
(9)

Plus de relation entre u_0 et v_0 .

Méthode de tir à 2 paramètres : difficile d'ajuster simultanément u_0 et v_0 !

Idée : méthode de continuation

On considère la dimension comme un paramètre réel noté $s \ge 1$. Soit alors $(u_s, v_s) = (u_s(r), v_s(r))$ solution de

$$u_{s}''(r) + \frac{s-1}{r}u_{s}'(r) - u_{s}(r) + u_{s}(r)v_{s}(r) = 0 \quad r > 0$$

$$v_{s}''(r) + \frac{s-1}{r}v_{s}'(r) - \rho v_{s}(r) + \frac{1}{2}u_{s}^{2}(r) = 0 \quad r > 0.$$
(10)

Point de départ : états (u_1, v_1) calculés en dimension 1 d'espace.

Stratégie : suivre un chemin entre 1 et d en utilisant que (10) est identiquement satisfait et en dérivant par rapport au paramètre abstrait s.

Si
$$\dot{u}_s := du_s/ds$$
 et $\dot{v}_s := dv_s/ds$,

$$\begin{cases} \dot{u}_{s}^{\prime\prime}(r) + \frac{s-1}{r} \dot{u}_{s}^{\prime}(r) - \dot{u}_{s}(r) + \dot{v}_{s}(r)u_{s}(r) + \dot{u}_{s}(r)v_{s}(r) = -\frac{1}{r}u_{s}^{\prime}(r) \\ \dot{v}_{s}^{\prime\prime}(r) + \frac{s-1}{r} \dot{v}_{s}^{\prime}(r) - \rho \dot{v}_{s}(r) + u_{s}(r)\dot{u}_{s}(r) = -\frac{1}{r}v_{s}^{\prime}(r). \end{cases}$$

$$(11)$$

 (\dot{u}_s, \dot{v}_s) calculé à partir de (u_s, v_s) en résolvant un système elliptique linéaire couplé.

Soit $F : (u_s, v_s) \mapsto (\dot{u}_s, \dot{v}_s)$ solution de (11). On a donc une équation différentielle

$$\begin{cases} (\dot{u}_s, \dot{v}_s) = F((u_s, v_s)), & s \in [1, d] \\ (u_s, v_s)\big|_{s=1} = (u_1, v_1), \end{cases}$$
(12)

Exemple : $\rho = 0.2$

Figure 10: $u_0, d = 2$.

Figure 11: u_1 , d = 3.

Résultats pour d = 2 :

3), $\rho = 0.2$.

Figure 12: u_k ($0 \le k \le$ Figure 13: v_k ($0 \le k \le$ 3), $\rho = 0.2$.

Vortex en dimension 2

On pose $u(x) \equiv e^{im\theta}u(r)$ et $v(x) \equiv e^{2im\theta}v(r)$, $m \in \mathbb{N}$.

$$\begin{cases} u''(r) + \frac{1}{r}u'(r) - \frac{m^2}{r^2}u(r) - u(r) + \bar{u}(r)v(r) = 0\\ v''(r) + \frac{1}{r}v'(r) - \frac{4m^2}{r^2}v(r) - \rho v(r) + \frac{1}{2}u^2(r) = 0. \end{cases}$$
(13)

avec u(0) = v(0) = 0. Changement de fonctions : $u(r) := r^m U(r)$ et $v(r) := r^{2m} V(r)$

$$\Rightarrow \begin{cases} U''(r) + \frac{1+2m}{r}U'(r) - U(r) + r^{2m}U(r)V(r) = 0\\ V''(r) + \frac{1+4m}{r}V'(r) - \rho V(r) + \frac{1}{2}U^2(r) = 0. \end{cases}$$
(14)

Stratégie :

Utilisation de la méthode de continuation par rapport au paramètre m: calcul de $(U_s(r), V_s(r)), 0 \le s \le m$.

Dérivation par rapport à *s* :

$$\begin{cases} \dot{U}_{s}''(r) + \frac{1+2s}{r} \dot{U}_{s}'(r) - \dot{U}_{s}(r) + r^{2s}V_{s}(r)\dot{U}_{s}(r) + r^{2s}U_{s}(r)\dot{V}_{s}(r) = -\frac{2}{r}U_{s}(r) - 2\log r r^{2s}U_{s}(r)V_{s}(r) \\ \dot{V}_{s}''(r) + \frac{1+4s}{r}\dot{V}_{s}'(r) - \rho\dot{V}_{s}(r) + U_{s}(r)\dot{U}_{s}(r) = -\frac{4}{r}V_{s}(r). \end{cases}$$
Point de départ : $s = 0 \implies$ solitons radiaux calculés pour $d = 2$.

Résultats pour $\rho = 0.2$, m = 2 :

Figure 14: $u_{k,m}$, $0 \leq$ Figure 15: $v_{k,m}$, $0 \leq$ k < 3.

 $k \leq 3.$

3 Conclusion

- (NLS) : méthode de tir valable pour les états radiaux et les vortex bidimensionnels. Permet d'avoir des comportements asymptotiques précis.
- Milieux quadratiques :
 - Solutions en dimension 1 : méthode de tir encore opérationnelle.
 - Solutions en dimension d ≥ 2 : méthode de continuation robuste pour calculer des solutions en faisant varier d, ρ, m pour des vortex.
 - Méthode adaptable au cas de trois champs ou plus (même en dimension 1, on ne peut pas utiliser de méthode de tir !).